
Open Object Rexx

Programming Guide
Version 3.0.0 Revision 3 Edition

November 11, 2005

Open Object Rexx: Programming Guide
Version 3.0.0 Revision 3 Edition
Published November 11, 2005
Copyright © 1995, 2004 IBM Corporation and others. All rights reserved.
Copyright © 2005 Rexx Language Association. All rights reserved.

This document was originally owned and copyrighted by IBM Corporation 1995, 2004. It was donated as open source under theCommon Public

License Version 1.0to the Rexx Language Association in 2004.

Before using this information and the product it supports, be sure to read the general information underNotices.

This program and the accompanying materials are made available under the terms of theCommon Public License Version 1.0.

Many thanks to Julian Choy for the ooRexx logo design.

Table of Contents
1. About This Book..1

1.1. Who Should Read This Book..1
1.2. What You Should Know before Reading This Book..1
1.3. Related Information..1
1.4. A Note About Program Examples in this Document..1

2. Meet Object Rexx..3

2.1. The Main Attractions..3
2.1.1. Object-Oriented Programming...3
2.1.2. An English-Like Language...3
2.1.3. Cross-Platform Versatility..3
2.1.4. Fewer Rules..3
2.1.5. Interpreted, Not Compiled..4
2.1.6. Built-In Functions and Methods...4
2.1.7. Typeless Variables..4
2.1.8. String Handling..4
2.1.9. Clear Error Messages and Powerful Debugging..4
2.1.10. Impressive Development Tools...4

2.2. Rexx and the Operating System..4
2.3. A Classic Language Gets Classier..4

2.3.1. From Traditional Rexx to Object Rexx..5
2.4. The Object Advantage...6
2.5. The Next Step..7

3. A Quick Tour of Traditional Rexx ...9

3.1. What Is a Rexx Program?...9
3.2. Running a Rexx Program..9
3.3. Elements of Rexx..10
3.4. Writing Your Program...10
3.5. Testing Your Program...11
3.6. Improving Startup Time..12
3.7. Variables, Constants, and Literal Strings..12
3.8. Assignments..13
3.9. Using Functions..14
3.10. Program Control..14
3.11. Subroutines and Procedures..18

4. Into the Object World ...21

4.1. What Is Object-Oriented Programming?..21
4.2. Modularizing Data..21
4.3. Modeling Objects..22
4.4. How Objects Interact...24
4.5. Methods...24
4.6. Polymorphism...25
4.7. Classes and Instances..25
4.8. Data Abstraction...27
4.9. Subclasses, Superclasses, and Inheritance..27

iii

5. The Basics of Classes...29

5.1. Rexx Classes for Programming...29
5.1.1. The Alarm Class...29
5.1.2. The Collection Classes...29
5.1.3. The Message Class...30
5.1.4. The Monitor Class..30
5.1.5. The Stem Class...31
5.1.6. The Stream Class..31
5.1.7. The String Class...31
5.1.8. The Supplier Class..31

5.2. Rexx Classes for Organizing Objects..32
5.2.1. The Object Class...32
5.2.2. The Class Class...32

5.3. Rexx Classes: The Big Picture..33
5.4. Creating Your Own Classes Using Directives...37

5.4.1. What Are Directives?...37
5.4.2. The Directives Rexx Provides..37

5.4.2.1. The ::CLASS Directive..37
5.4.2.2. The ::METHOD Directive...38
5.4.2.3. The ::ROUTINE Directive...38
5.4.2.4. The ::REQUIRES Directive...39

5.4.3. How Directives Are Processed...39
5.4.4. A Sample Program Using Directives..39
5.4.5. Another Sample Program...40

5.5. Creating Classes Using Messages...41
5.5.1. Defining a New Class...41
5.5.2. Adding a Method to a Class...42
5.5.3. Defining a Subclass of the New Class..42
5.5.4. Defining an Instance...42

5.6. Types of Classes..42
5.6.1. Object Classes..43
5.6.2. Abstract Classes..43
5.6.3. Mixin Classes...43

5.7. Metaclasses...44

6. A Closer Look at Objects..47

6.1. Using Objects in Rexx Clauses...47
6.2. Common Methods...49

6.2.1. Initializing Instances Using INIT...49
6.2.2. Returning String Data Using STRING...49
6.2.3. Uninitializing and Deleting Instances Using UNINIT...52

6.3. Special Variables...53
6.4. Public, Local, and Built-In Environment Objects...55

6.4.1. The Public Environment Object (.environment)...55
6.4.1.1. The NIL Object (.nil)...55

6.4.2. The Local Environment Object (.local)..55
6.4.3. Built-In Environment Objects..56
6.4.4. The Default Search Order for Environment Objects..57

iv

6.5. Determining the Scope of Methods and Variables..57
6.5.1. Objects with a Class Scope...58
6.5.2. Objects with Their Own Unique Scope..58

6.6. More about Methods...59
6.6.1. The Default Search Order for Selecting a Method...59
6.6.2. Changing the Search Order for Methods..61
6.6.3. Public versus Private Methods..62
6.6.4. Defining an UNKNOWN Method..62

6.7. Concurrency..62
6.7.1. Inter-Object Concurrency...62

6.7.1.1. Object Variable Pools...63
6.7.1.2. Prioritizing Access to Variables...64
6.7.1.3. Sending Messages within an Activity..64

6.7.2. Intra-Object Concurrency...64
6.7.2.1. Activating Methods..65

7. Commands..67

7.1. How to Issue Commands..67
7.2. Command Echo...69
7.3. Rexx and Batch Files..69
7.4. Issuing a Command to Call a .CMD File..70
7.5. Using Variables to Build Commands..71
7.6. Using Quotation Marks...72
7.7. ADDRESS Instruction..73
7.8. Using Return Codes from Commands..73
7.9. Subcommand Processing..74
7.10. Trapping Command Errors..74

7.10.1. Instructions and Conditions..75
7.10.2. Disabling Traps...75
7.10.3. Using SIGNAL ON ERROR..75
7.10.4. Using CALL ON ERROR..76
7.10.5. A Common Error-Handling Routine..76

8. Input and Output ...79

8.1. More about Stream Objects...79
8.2. Reading a Text File...80
8.3. Reading a Text File into an Array...81
8.4. Reading Specific Lines of a Text File...81
8.5. Writing a Text File..82
8.6. Reading Binary Files...83
8.7. Reading Text Files a Character at a Time...83
8.8. Writing Binary Files..85
8.9. Closing Files...85
8.10. Direct File Access...85
8.11. Checking for the Existence of a File...88
8.12. Getting Other Information about a File...88
8.13. Using Standard I/O..89
8.14. Using Windows Devices...90

v

A. Rexx Application Programming Interfaces..93

A.1. Handler Characteristics..93
A.2. RXSTRINGs..94
A.3. Calling the Rexx Interpreter...95

A.3.1. From the Operating System...95
A.3.2. From within an Application...95
A.3.3. The RexxStart Function...95

A.3.3.1. Parameters...95
A.3.3.2. Return Codes...98
A.3.3.3. Example..98

A.3.4. The RexxWaitForTermination Function..101
A.3.5. The RexxDidRexxTerminate Function..101

A.3.5.1. Return Codes...101
A.3.5.2. Example..102

A.4. Subcommand Interface...102
A.4.1. Registering Subcommand Handlers..102

A.4.1.1. Creating Subcommand Handlers..102
A.4.1.1.1. Example..103

A.4.2. Subcommand Interface Functions...104
A.4.2.1. RexxRegisterSubcomDll...104

A.4.2.1.1. Parameters..104
A.4.2.1.2. Return Codes..105
A.4.2.1.3. Remarks..106

A.4.2.2. RexxRegisterSubcomExe..106
A.4.2.2.1. Parameters..106
A.4.2.2.2. Return Codes..106
A.4.2.2.3. Remarks..107
A.4.2.2.4. Example..107

A.4.2.3. RexxDeregisterSubcom...107
A.4.2.3.1. Parameters..107
A.4.2.3.2. Return Codes..108
A.4.2.3.3. Remarks..108

A.4.2.4. RexxQuerySubcom...108
A.4.2.4.1. Parameters..108
A.4.2.4.2. Return Codes..109
A.4.2.4.3. Example..109

A.5. External Function Interface..109
A.5.1. Registering External Functions...110

A.5.1.1. Creating External Functions..110
A.5.2. Calling External Functions..111

A.5.2.1. Example..111
A.5.3. External Function Interface Functions..112

A.5.3.1. RexxRegisterFunctionDll..112
A.5.3.1.1. Parameters..112
A.5.3.1.2. Return Codes..112
A.5.3.1.3. Remarks..112
A.5.3.1.4. Example..113

A.5.3.2. RexxRegisterFunctionExe...113

vi

A.5.3.2.1. Parameters..114
A.5.3.2.2. Return Codes..114

A.5.3.3. RexxDeregisterFunction...114
A.5.3.3.1. Parameters..114
A.5.3.3.2. Return Codes..114

A.5.3.4. RexxQueryFunction..114
A.5.3.4.1. Parameters..115
A.5.3.4.2. Return Codes..115
A.5.3.4.3. Remarks..115

A.6. System Exit Interface...115
A.6.1. Writing System Exit Handlers...115

A.6.1.1. Exit Return Codes...116
A.6.1.2. Exit Parameters...117
A.6.1.3. Identifying Exit Handlers to Rexx..117

A.6.1.3.1. Example..117
A.6.2. System Exit Definitions...118

A.6.2.1. RXFNC...120
A.6.2.2. RXCMD..122
A.6.2.3. RXMSQ..122
A.6.2.4. RXSIO...124
A.6.2.5. RXHLT..126
A.6.2.6. RXTRC...126
A.6.2.7. RXINI..127
A.6.2.8. RXTER..128

A.6.3. System Exit Interface Functions..128
A.6.3.1. RexxRegisterExitDll...128

A.6.3.1.1. Parameters..128
A.6.3.1.2. Return Codes..129
A.6.3.1.3. Remarks..129

A.6.3.2. RexxRegisterExitExe..129
A.6.3.2.1. Parameters..130
A.6.3.2.2. Return Codes..130
A.6.3.2.3. Remarks..130
A.6.3.2.4. Example..130

A.6.3.3. RexxDeregisterExit...131
A.6.3.3.1. Parameters..131
A.6.3.3.2. Return Codes..131
A.6.3.3.3. Remarks..131

A.6.3.4. RexxQueryExit..131
A.6.3.4.1. Parameters..132
A.6.3.4.2. Return Codes..132
A.6.3.4.3. Example..132

A.7. Variable Pool Interface...133
A.7.1. Interface Types...133

A.7.1.1. Symbolic Interface..133
A.7.1.2. Direct Interface...133

A.7.2. RexxVariablePool Restrictions..133
A.7.3. RexxVariablePool Interface Function..134

vii

A.7.3.1. RexxVariablePool..134
A.7.3.1.1. Parameters..134
A.7.3.1.2. RexxVariablePool Return Codes..138
A.7.3.1.3. Example..138

A.8. Dynamically Allocating and De-allocating Memory...139
A.8.1. The RexxAllocateMemory() Function..139
A.8.2. The RexxFreeMemory() Function...139

A.9. Queue Interface..140
A.9.1. Queue Interface Functions...140

A.9.1.1. RexxCreateQueue...140
A.9.1.1.1. Parameters..140
A.9.1.1.2. Return Codes..141
A.9.1.1.3. Remarks..141

A.9.1.2. RexxDeleteQueue...141
A.9.1.2.1. Parameters..141
A.9.1.2.2. Return Codes..141
A.9.1.2.3. Remarks..141

A.9.1.3. RexxQueryQueue..142
A.9.1.3.1. Parameters..142
A.9.1.3.2. Return Codes..142

A.9.1.4. RexxAddQueue...142
A.9.1.4.1. Parameters..142
A.9.1.4.2. Return Codes..143

A.9.1.5. RexxPullQueue...143
A.9.1.5.1. Parameters..143
A.9.1.5.2. Return Codes..143
A.9.1.5.3. Remarks..144

A.10. Halt and Trace Interface...144
A.10.1. Halt and Trace Interface Functions..144

A.10.1.1. RexxSetHalt..144
A.10.1.1.1. Parameters..144
A.10.1.1.2. Return Codes..145
A.10.1.1.3. Remarks..145

A.10.1.2. RexxSetTrace..145
A.10.1.2.1. Parameters..145
A.10.1.2.2. Return Codes..145
A.10.1.2.3. Remarks..145

A.10.1.3. RexxResetTrace..145
A.10.1.3.1. Parameters..146
A.10.1.3.2. Return Codes..146
A.10.1.3.3. Remarks..146

A.11. Macrospace Interface...146
A.11.1. Search Order..147
A.11.2. Storage of Macrospace Libraries...147
A.11.3. Macrospace Interface Functions..147

A.11.3.1. RexxAddMacro...147
A.11.3.1.1. Parameters..147
A.11.3.1.2. Return Codes..148

viii

A.11.3.2. RexxDropMacro..148
A.11.3.2.1. Parameter..148
A.11.3.2.2. Return Codes..148

A.11.3.3. RexxClearMacroSpace..149
A.11.3.3.1. Return Codes..149
A.11.3.3.2. Remarks..149

A.11.3.4. RexxSaveMacroSpace...149
A.11.3.4.1. Parameters..149
A.11.3.4.2. Return Codes..149
A.11.3.4.3. Remarks..150

A.11.3.5. RexxLoadMacroSpace..150
A.11.3.5.1. Parameters..150
A.11.3.5.2. Return Codes..150
A.11.3.5.3. Remarks..151

A.11.3.6. RexxQueryMacro..151
A.11.3.6.1. Parameters..151
A.11.3.6.2. Return Codes..151

A.11.3.7. RexxReorderMacro...151
A.11.3.7.1. Parameters..152
A.11.3.7.2. Return Codes..152

A.12. Windows Scripting Host Interface...152
A.12.1. Concurrency...152
A.12.2. WSH Features..153

A.12.2.1. COM Interfaces...153
A.12.2.2. Script Debugging..154
A.12.2.3. DCOM...154

B. Object Rexx Runtime..155

B.1. Distributing Programs without Source...155

C. Sample Rexx Programs..157

D. Notices..163

D.1. Trademarks...163
D.2. Source Code For This Document...164

E. Common Public License Version 1.0...165

E.1. Definitions..165
E.2. Grant of Rights...165
E.3. Requirements..166
E.4. Commercial Distribution..166
E.5. No Warranty..167
E.6. Disclaimer of Liability..167
E.7. General..168

Index..169

ix

x

List of Figures
2-1. Objects in a Billing Application...5
4-1. Modular Data--a Report Object..22
4-2. A Ball Object..22
4-3. Ball Object with Variable Names and Values...23
4-4. Encapsulated 5 Object..23
4-5. A Simple Class...25
4-6. Icon Class...26
4-7. Instances of the Icon Class...26
4-8. Superclass and Subclasses..27
4-9. The Screen-Object Superclass..28
4-10. Multiple Inheritance...28
5-1. How Subclasses Inherit Instance Methods from the Class Class...32
5-2. Classes and Inheritance of Methods (part 1 of 4)...33
5-3. Classes and Inheritance of Methods (Part 2 of 4)..34
5-4. Classes and Inheritance of Methods (Part 3 of 4)..35
5-5. Classes and Inheritance of Methods (Part 4 of 4)..36
6-1. Instance Methods and Class Methods..47
6-2. Instances in the Part Class..50
6-3. Scope of the Number Class..58
6-4. Searching the Hierarchy for a Method...60

xi

xii

Chapter 1. About This Book
This book describes the Open Object Rexx, or Object Rexx programming language. In the following, it
is called Rexx unless compared to its traditional predecessor.

This book is aimed at developers familiar with Windows® and Unix® who want to use Rexx for
object-oriented programming, or a mix of traditional and object-oriented programming.

This book assumes you are already familiar with the techniques of traditional structured programming,
and uses them as a springboard for quickly understanding Rexx and, in particular, Object Rexx. This
approach is designed to help experienced programmers get involved quickly with the Rexx language,
exploit its virtues, and become productive fast.

1.1. Who Should Read This Book
Anyone interested in getting a basic understanding of object-oriented concepts should read this book.
Experienced programmers can learn about the Rexx language and how it is like and unlike other
structured programming languages. Programmers who want to broaden their programming knowledge
can learn object-oriented programming with Rexx. Users already experienced with Rexx can learn about
object-oriented programming (OO) in general, and OO programming with Rexx in particular.

Programmers who want to make their applications (typically coded in C) scriptable by Rexx, extend the
Rexx language, or control Rexx scripts from other applications should read the application programming
interface (API) information.

1.2. What You Should Know before Reading This Book
To most effectively use the information contained in this book, you should know how to:

• Program with a traditional language like C, Basic, or Pascal.

• Use basic Windows commands for manipulating files, such as COPY, DELETE, and DIR. The more
familiar you are with Windows, the better.

If you have little or no experience with the Windows operating system, refer to the documentation
provided with it. You should also have theOpen Object Rexx: Referenceat hand.

1.3. Related Information
See also:Open Object Rexx for Windows: Reference

1

Chapter 1. About This Book

1.4. A Note About Program Examples in this Document
The program examples in this document are rendered in a mono-spaced font that is not completely
compatible for cut-and-paste functionality. Pasteing text into an editor could result in some characters
outside of the standard ASCII character set. Specifically, single-qoute characters are known to be
incorrectly converted when pasted into an editor.

2

Chapter 2. Meet Object Rexx
Rexx is a versatile, free-format language. Its simplicity makes it a good first language for beginners. For
more experienced users and computer professionals, Rexx offers powerful functions and the ability to
issue commands to several environments.

2.1. The Main Attractions
The following aspects of Rexx round out its versatility and functions.

2.1.1. Object-Oriented Programming
Object-oriented extensions have been added to traditional Rexx, but its existing functions and
instructions have not changed. The Object Rexx interpreter is actually an enhanced version of its
predecessor, but with new support for:

• Classes, objects, and methods

• Messaging and polymorphism

• Inheritance and multiple inheritance

Object Rexx supplies the user with a base set of classes: ALARM, CLASS, ARRAY, LIST, QUEUE,
TABLE, SET, DIRECTORY, RELATION, BAG, MESSAGE, METHOD, MONITOR, STEM,
STREAM, STRING, and SUPPLIER. Object Rexx is fully compatible with earlier versions of Rexx that
were not object-oriented.

2.1.2. An English-Like Language
To make Rexx easier to learn and use, many of its instructions are meaningful English words. Rexx
instructions are common words such as SAY, PULL, IF...THEN...ELSE, DO...END, and EXIT.

2.1.3. Cross-Platform Versatility
Versions of Object Rexx are now available for a wide variety of platforms, and the programs you create
with Object Rexx will run on any of these, including Linux™ for Intel™, Linux for S/390®, and AIX®,
as well as Windows 95™, Windows 98™, Windows NT®, and Windows 2000®.

2.1.4. Fewer Rules
Rexx has relatively few rules about format. A single instruction can span many lines, and you can
include several instructions on a single line. Instructions need not begin in a particular column and can be
typed in uppercase, lowercase, or mixed case. You can skip spaces in a line or entire lines. There is no
line numbering.

3

Chapter 2. Meet Object Rexx

2.1.5. Interpreted, Not Compiled
Rexx is an interpreted language. When a Rexx program runs, its language processor reads each statement
from the source file and runs it, one statement at a time. Languages that are not interpreted must be
compiled into object code before they can be run.

2.1.6. Built-In Functions and Methods
Rexx has built-in functions and methods that perform various processing, searching, and comparison
operations for text and numbers and provide formatting capabilities and arithmetic calculations.

2.1.7. Typeless Variables
Rexx regards all data as objects of various kinds. Variables can hold any kind of object, so you need not
declare variables as strings or numbers.

2.1.8. String Handling
Rexx includes capabilities for manipulating character strings. This allows programs to read and separate
characters, numbers, and mixed input. Rexx performs arithmetic operations on any string that represents
a valid number, including those in exponential formats.

2.1.9. Clear Error Messages and Powerful Debugging
Rexx displays messages with meaningful explanations when a Rexx program encounters an error. In
addition, the TRACE instruction provides a powerful debugging tool.

2.1.10. Impressive Development Tools
The Open Object Rexx Windows places many powerful tools at your disposal. These include a Rexx API
to other languages like C/C++ or Cobol, OLE/ActiveX support, a mathematical functions package, file
encryption functions for the Windows 2000 file system, and Windows Scripting Host support.

2.2. Rexx and the Operating System
The most important role Rexx plays is as a programming language for Windows and Unix. A Rexx
program can serve as a script for the operating system to follow. Using Rexx, you can reduce long,
complex, or repetitious tasks to a single command or program.

4

Chapter 2. Meet Object Rexx

2.3. A Classic Language Gets Classier
Object-oriented extensions have been added to traditional Rexx without changing its existing functions
and instructions. So you can continue to use Rexx’s procedural instructions, and incorporate objects as
you become more comfortable with the technology. In general, your current Rexx programs will work
without change. In contrast to the traditional Rexx interpreter, the Object Rexx interpreter checksall the
syntax at start-up time, and this means that any syntax errors that exist will be found.

In object-oriented technology,objectsare used in programs to model the real world. Similar objects are
grouped intoclasses, and the classes themselves are arranged in hierarchies.

As an object-oriented programmer, you solve problems by identifying and classifying objects related to
the problem. Then you determine what actions or behaviors are required of those objects. Finally, you
write the instructions to generate the classes, create the objects, and implement the actions. Your main
program consists of instructions that send messages to objects.

A billing application, for example, might have an Invoice class and a Receipt class. These two classes
might be members of a Forms class. Individual invoices areinstancesof the Invoice class.

Figure 2-1. Objects in a Billing Application

Each instance contains all the data associated with it (such as customer name or descriptions and prices
of items purchased). To get at the data, you write instructions that send messages to the objects. These
messages activate coded actions called methods. For an invoice object, you might need CREATE,
DISPLAY, PRINT, UPDATE, and ERASE methods.

2.3.1. From Traditional Rexx to Object Rexx
In traditional (classic) Rexx, all data was stored as strings. The strings represented character data as well
as numeric data. From an object-oriented perspective, traditional Rexx had one kind of objects: strings.
In object-oriented terminology, each string variable is anobjectthat is an instance of the String class.

In Object Rexx, variables can now reference objects other than strings. In addition to a string class, Rexx
now includes classes for creating arrays, queues, streams, and many other useful objects. Objects in these
new Rexx classes are manipulated by methods instead of traditional functions. To activate a method, you
just send a message to the object.

For example, instead of using the SUBSTR function on a string variable Name, you send a SUBSTR
message to the string object. In classic Rexx, you would do the following:

5

Chapter 2. Meet Object Rexx

s=substr(name,2,3)

In Object Rexx, the equivalent would be:

s=name~substr(2,3)

The tilde (~) character is the Rexx message send operator, called twiddle. The object receiving the
message is to the left of the twiddle. The message sent is to the right. In this example, the Name object is
sent the SUBSTR message. The numbers in parentheses (2,3) are arguments sent as part of the message.
The SUBSTR method is run for the Name object, and the result is assigned to thes string object.

For the new classes (such as array or queue), methods are provided, but not equivalent functions. For
example, suppose you want to use a Rexx array object instead of the traditional string-based stem
variables (such as text.1 or text.2). To create an array object of five elements, you would send a NEW
message to the array class as follows:

myarray=.array~new(5)

A new instance, named Myarray, of the Array class is created. A period and the class name identify the
class. The period is necessary because it precedes the class name in an expression. The Myarray array
object has five elements. Some of the other methods, besides NEW, for array objects are PUT, AT,
REMOVE, SIZE, [], and []=.

By adding object technology to its repertoire of traditional programming techniques, Rexx has evolved
into an object-oriented language, like Smalltalk. Object Rexx accommodates the programming
techniques of traditional Rexx while adding new ones. With Object Rexx, you can use the new
technology as much or as little as you like, at whatever pace you like. You can mix classic and object
techniques. You can ease into the object world gradually, building on the Rexx skills and knowledge you
already have.

2.4. The Object Advantage
If you are unsure about whether to employ Rexx’s object-oriented features, here are some tips to help
you decide.

Object-oriented technology reinforces good programming practices, such as hiding your data from code
that does not use it (encapsulation and polymorphism), partitioning your program in small, manageable
units (classification and data abstraction), reusing code wherever possible and changing it in one place
(inheritance and functional decomposition).

Other advantages often associated with object technology are:

• Simplified design through modeling with objects

• Greater code reuse

• Rapid prototyping

• The higher quality of proven components

• Easier and reduced maintenance

6

Chapter 2. Meet Object Rexx

• Cost-savings potential

• Increased adaptability and scalability

With Object Rexx, you get the user-friendliness of Rexx in an object-oriented environment.

Object Rexx provides a Sockets API for Rexx. So you can script Object Rexx clients and servers, and
run them in the Internet.

Object Rexx also provides access to FTP commands by means of its RxFtp package, and to the use of
mathematical functions by means of its RxMath utility package. The Sockets, FTP, and mathematical
functions packages are each supplied with separate, full documentation.

2.5. The Next Step
If you already know traditional Rexx and want to go straight to the basic concepts of object-oriented
programming, continue withInto the Object World.

If you are unfamiliar with traditional Rexx, continue to readA Quick Tour of Traditional Rexx.

7

Chapter 2. Meet Object Rexx

8

Chapter 3. A Quick Tour of Traditional Rexx
Because this book is for Windows and Unix programmers, it is assumed that you are familiar with at
least one other language. This chapter gives an overview of the basic Rexx rules and shows you in which
respects Rexx is similar to, or different from, other languages you may already know.

3.1. What Is a Rexx Program?
A Rexx program is a text file, typically created using a text editor or a word processor that contains a list
of instructions for your computer. Rexx programs are interpreted, which means the program is, like a
batch file, processed line by line. Consequently, you do not have to compile and link Rexx programs. To
run a Rexx program, all you need is Windows or Unix/Linux, the Object Rexx interpreter, and the ASCII
text file containing the program.

Rexx is similar to programming languages such as C, Pascal, or Basic. An important difference is that
Rexx variables have no data type and are not declared. Instead, Rexx determines from context whether
the variable is, for example, a string or a number. Moreover, a variable that was treated as a number in
one instruction can be treated as a string in the next. Rexx keeps track of the variables for you. It
allocates and deallocates memory as necessary.

Another important difference is that you can execute Windows, Unix/Linux commands and other
applications from a Rexx program. This is similar to what you can do with a Windows Batch facility
program. However, in addition to executing the command, you can also receive a return code from the
command and use any displayed output in your Rexx program. For example, the output displayed by a
DIR command can be intercepted by a Rexx program and used in subsequent processing.

Rexx can also direct commands to environments other than Windows. Some applications provide an
environment to which Rexx can direct subcommands of the application. Or they also provide functions
that can be called from a Rexx program. In these situations, Rexx acts as a macrolanguage for the
application.

3.2. Running a Rexx Program
Rexx programs should have a file extension of CMD on Windows, just like Batch facility files, or REX
(default to prevent confusion with Windows NT files). Here is a typical Rexx program named
GREETING.CMD. It prompts the user to type in a name and then displays a personalized greeting:

/* GREETING.CMD - a Rexx program to display a greeting. */

say "Please enter your name." /* Display a message */

pull name /* Read response */

say "Hello" name /* Display greeting */

exit 0 /* Exit with a return code of 0 */

The program begins with a comment. This is not a requirement, but it is recommended to ensure
compatibility with other operating systems, such as OS/2, where the first line in a Rexx program must be
a comment line.

The Object Rexx interpreter is invoked by the command

9

Chapter 3. A Quick Tour of Traditional Rexx

Rexx

To run the program MYRexx.CMD, for example, use the commandRexx MYRexx.CMD.

ORXWB

If you want to run your Rexx program in silent mode without creating a console window on Windows,
you can invoke RexxHIDE.EXE followed by the program name and the program arguments from a
program item. If RexxHIDE is called from within a console window, no output is displayed in the
console window.

SAY is a Rexx instruction that displays a message (like PRINT in Basic or printf in C). The message to
be displayed follows the SAY keyword. The single quotes are necessary to delimit a character string. In
this case, the character string isPlease enter your name. You can use double quotes (") instead of
single quotes.

The PULL instruction reads a line of text from the standard input (the keyboard), and returns the text in
the variable specified with the instruction. In our example, the text is returned in the variable name.

The next SAY instruction provides a glimpse of what can be done with Rexx strings. It displays the
wordHello followed by the name of the user, which is stored in variable name. Rexx substitutes the
value of name and displays the resulting string. You do not need a separate format string as you do with
C or Basic.

The final instruction, EXIT, ends the Rexx program. Control returns to Windows or Unix/Linux. EXIT
can also return a value. In our example, 0 is returned. The EXIT instruction is optional.

You can terminate a running Rexx program by pressing the Ctrl+Break key combination. Rexx stops
running the program and control returns to Windows or Unix/Linux.

3.3. Elements of Rexx
Rexx programs are made up of clauses. Each clause is a complete Rexx instruction.

Rexx instructions include the obligatory program control verbs (IF, SELECT, DO, CALL, RETURN) as
well as verbs that are unique to Rexx (such as PARSE, GUARD, and EXPOSE). In all, there are about 30
instructions. Many Rexx programs use only a small subset of the instructions.

A wide variety of built-in functions complements the instruction set. Many functions manipulate strings
(such as SUBSTR, WORDS, POS, and SUBWORD). Other functions perform stream I/Os (such as
CHARIN, CHAROUT, LINEIN, and LINEOUT). Still other functions perform data conversion (such as
X2B, X2C, D2X, and C2D). A quick glance through the functions section of theOpen Object Rexx:
Referencegives you an idea of the scope of capabilities available to you.

The built-in functions are also available in Rexx implementations on other operating systems. In addition
to these system-independent functions, Rexx includes a set of functions for working with Windows itself.
These functions, known as the Rexx Utilities, let you work with resources managed by Windows, such as
the display, the desktop, and the file system.

Instructions and functions are the building blocks of traditional Rexx programs. To convert Rexx into an
object-oriented language, two more elements are needed: classes and methods. Classes and methods are
covered in later chapters. This chapter continues with traditional building blocks of Rexx.

10

Chapter 3. A Quick Tour of Traditional Rexx

3.4. Writing Your Program
You can create Rexx programs using any editor that can write straight ASCII files without hidden format
controls. The Windows Notepad is an editor that you can use.

Rexx is a free-format programming language. You can indent lines and insert blank lines for readability
if you wish. But even free-format languages have some rules about how language elements are used.
Rexx’s rules center around its basic language element: the clause.

Usually, there is one clause on each line of the program, but you can put several and separate each clause
with a semicolon (;):

say "Hello"; say "Goodbye" /* Two clauses on one line */

To continue a clause on a second line, put a comma at the end of the line:

say, /* Continuation */

"It isn’t so"

If you need to continue a literal string, do it like this:

say, /* Continuation of literal strings */

"This is a long string that we want to continue",

"on another line."

Rexx automatically adds a blank aftercontinue. If you need to split a string, but do not want to have a
blank inserted when Rexx puts the string back together, use the Rexx concatenation operator (||):

say "I do not want Rexx to in"||, /* Continuation with concatenation */

"sert a blank!"

3.5. Testing Your Program
When writing your program, you can test statements as you go along using the REXXTRY command
from the Windows command prompt. REXXTRY is a kind of Rexx mini-interpreter that checks Rexx
statements one at a time. If you run REXXTRY with no parameter, or with a question mark as a
parameter, REXXTRY also briefly describes itself.

From your current Windows or Unix/Linux window, open another window and type:

REXX rexxtry /* on windows the case of the REXX is insignificant */

rexx rexxtry /* on unix the Rexx command is always specified in lowercase */

REXXTRY describes itself and asks you for a Rexx statement to test. Enter your statement; REXXTRY
then runs it and returns any information available, or displays an error message if a problem is
encountered. REXXTRY remembers any previous statements you have entered during the session. To
continue, just type the next line in your program and REXXTRY will check it for you.

Enter an equal sign (=) to repeat your previous statement, or a question mark (?) to invoke
system-provided online information about the Rexx language.

When you are done, type:

11

Chapter 3. A Quick Tour of Traditional Rexx

exit

and press Enter to leave REXXTRY.

You can also enter a Rexx statement directly on the command line for immediate processing and exit:

REXX rexxtry call show

In this case, entering CALL SHOW displays the user variables provided by RexxTRY.

3.6. Improving Startup Time
If the environment variable RXSAVETOKENS is set to YES, Object Rexx stores the internal format at
the end of the program script. When this program is executed the next time, the so-called parsing process
can be skipped and the program can be started faster.

Whenever you modify your program script, the image at the end of the file is discarded by the editor and
the modifications are therefore recognized by the Object Rexx interpreter. Using this mechanism requires
an editor that can handle files terminated by Ctrl+Z (EOF).

If the editor you are using does not discard the data after EOF, changes within the ASCII code are not
reflected in the tokenized script.

3.7. Variables, Constants, and Literal Strings
Comprehensive rules for variables, constants, and literal strings are contained in theOpen Object Rexx:
Reference.

Rexx imposes few rules on variable names. A variable name can be up to 250 characters long, with the
following restrictions:

• The first character must be A-Z, a-z, !, ?, or _ . Rexx translates lowercase letters to uppercase before
using them.

• The rest of the characters may be A-Z, a-z, !, ?, or _, ., or 0-9.

• The period (.) has a special meaning for Rexx variables. Do not use it in a variable name until you
understand the rules for forming compound symbols.

The variable name can be typed and queried in uppercase, mixed-case, or lowercase characters. A
variable name in uppercase characters, for example, can also be queried in lowercase or mixed-case
characters. If you query a variable name that has not yet been set, the name is returned in uppercase
characters.

Literal strings in Rexx are delimited by quotation marks (either ’ or "). Examples of literal strings are:

’Hello’

"Final result:"

If you need to use quotation marks within a literal string, use quotation marks of the other type to delimit
the string. For example:

12

Chapter 3. A Quick Tour of Traditional Rexx

"Don’t panic"

’He said, "Bother"’

There is another way to do this. Within a literal string, a pair of quotation marks (the same type that
delimits the string) is interpreted as one of that type. For example:

’Don t panic’ (same as "Don’t panic")

"He said, ""Bother""" (same as ’He said, "Bother"’)

3.8. Assignments
Assignments in Rexx usually take this form:

name = expression

Forname, specify any valid variable name. Forexpression, specify the information to be stored, such as a
number, a string, or some calculation. Here are some examples:

a=1+2

b=a*1.5

c="This is a string assignment. No memory allocation needed!"

The PARSE instruction and its variants PULL and ARG also assign values to variables. PARSE assigns
data from various sources to one or more variables according to the rules of parsing. PARSE PULL, for
example, is often used to read data from the keyboard:

/* Using PARSE PULL to read the keyboard */

say "Enter your first name and last name" /* prompt user */

parse pull response /* read keyboard and put result in RESPONSE */

say response /* possibly displays "John Smith" */

Other operands of PARSE indicate the source of the data. PARSE ARG, for example, retrieves command
line arguments. PARSE VERSION retrieves the information about the version of the Rexx interpreter
being used.

The most powerful feature of PARSE, however, is its ability to parse data according to a template that
you supply. The various pieces of data are assigned to variables that are part of the template. The
following example prompts the user for a date, and assigns the month, day, and year to different
variables. (In a real application, you would want to add instructions to verify the input.)

/* PARSE example using a template */

say "Enter a date in the form MM/DD/YY"

parse pull month "/" day "/" year

say month

say day

say year

The template in this example contains two literal strings ("/"). The PARSE instruction uses these literals
to determine how to split the data.

13

Chapter 3. A Quick Tour of Traditional Rexx

The PULL and ARG instructions are short forms of the PARSE instruction. See theObject Rexx:
Referencefor more information on Rexx parsing.

3.9. Using Functions
Rexx functions can be used in any expression. In the following example, the built-in function WORD is
used to return the third blank-delimited word in a string:

/* Example of function use */

myname="John Q. Public" /* assign a literal string to MYNAME */

surname=word(myname,3) /* assign WORD result to SURNAME */

say surname /* display Public */

Literal strings can be supplied as arguments to functions, so the previous program can be rewritten as
follows:

/* Example of function use */

surname=word("John Q. Public",3) /* assign WORD result to SURNAME */

say surname /* display Public */

Because an expression can be used with the SAY instruction, you can further reduce the program to:

/* Example of function use */

say word("John Q. Public",3)

Functions can be nested. Suppose you want to display only the first two letters of the third word, Public.
The LEFT function can return the first two letters, but you need to give it the third word. LEFT expects
the input string as its first argument and the number of characters to return as its second argument:

/* Example of function use */

/* Here is how to do it without nesting */

thirdword=word("John Q. Public",3)

say left(thirdword,2)

/* And here is how to do it with nesting */

say left(word("John Q. Public",3),2)

3.10. Program Control
Rexx has instructions such as DO, IF, and SELECT to control your program. Here is a typical
Rexx IF instruction:

if a>1 & b<0 then do

say "Whoops, A is greater than 1 while B is less than 0!"

say "I’m ending with a return code of 99."

exit 99

end

14

Chapter 3. A Quick Tour of Traditional Rexx

The Rexx relational operator for a logical AND is different from the operator in C, which is &&. Other
relational operators differ as well, so you may want to review the appropriate section in theOpen Object
Rexx: Reference.

Here is a list of some Rexx comparison operators and operations:

=

True if the terms are equal (numerically, when padded, and so on)

\=, ¬=

True if the terms are not equal (inverse of =)

>

Greater than

<

Less than

<>

Greater than or less than (same as not equal)

>=

Greater than or equal to

<=

Less than or equal to

==

True if terms are strictly equal (identical)

\==,¬==

True if the terms are NOT strictly equal (inverse of ==)

Note: Throughout the language, the NOT character, ¬, is synonymous with the backslash (\). You
can use both characters. The backslash can appear in the \ (prefix not), \=, and \== operators.

A character string has the value false if it is 0, and true if it is 1. A logical operator can take at least two
values and return 0 or 1 as appropriate:

&

AND - returns1 if both terms are true.

|

Inclusive OR - returns1 if either term or both terms are true.

15

Chapter 3. A Quick Tour of Traditional Rexx

&&

Exclusive OR - returns1 if either term, but not both terms, is true.

Prefix \,¬

Logical NOT - negates;1 becomes0, and0 becomes1.

Note: On ASCII systems, Rexx recognizes the ASCII character encoding 124 as the logical OR
character. Depending on the code page or keyboard you are using for your particular country, the
logical OR character is shown as a solid vertical bar (|) or a split vertical bar (¦). The appearance of
the character on your screen might not match the character engraved on the key. If you receive error
13, invalid character in program, on an instruction including a vertical bar, make sure this
character is ASCII character encoding 124.

Using the wrong relational or comparison operator is a common mistake when switching between C and
Rexx. The familiar C language braces { } are not used in Rexx for blocks of instructions. Instead, Rexx
uses DO/END pairs. The THEN keyword is always required.

Here is an IF instruction with an ELSE:

if a>1 & b<0 then do

say "Whoops, A is greater than 1 while B is less than 0!"

say "I’m ending with a return code of 99."

exit 99

end

else do

say "A and B are okay."

say "On with the rest of the program."

end /* if */

You can omit the DO/END pairs if only one clause follows the THEN or ELSE keyword:

if words(myvar) > 5 then

say "Variable MYVAR has more than five words."

else

say "Variable MYVAR has fewer than six words."

Rexx also supports an ELSE IF construction:

count=words(myvar)

if count > 5 then

say "Variable MYVAR has more than five words."

else if count >3 then

say "Variable MYVAR has more than three, but fewer than six words."

else

say "Variable MYVAR has fewer than four words."

The SELECT instruction in Rexx is similar to the SELECT CASE statement in Basic and the switch
statement in C. SELECT executes a block of statements based on the value of an expression. Rexx’s
SELECT differs from the equivalent statements in Basic and C in that the SELECT keyword is not
followed by an expression. Instead, expressions are placed in WHEN clauses:

16

Chapter 3. A Quick Tour of Traditional Rexx

select

when name="Bob" then

say "It’s Bob!"

when name="Mary" then

say "Hello, Mary."

otherwise

end /* select */

WHEN clauses are evaluated sequentially. When one of the expressions is true, the statement, or block of
statements, is executed. All the other blocks are skipped, even if their WHEN clauses would have
evaluated to true. Notice that statements like the break statement in C are not needed.

The OTHERWISE keyword is used without an instruction following it. Rexx does not require an
OTHERWISE clause. However, if none of the WHEN clauses evaluates to true and you omit
OTHERWISE, an error occurs. Therefore, always include an OTHERWISE.

As with the IF instruction, you can use DO/END pairs for several clauses within SELECT cases. You do
not need a DO/END pair if several clauses follow the OTHERWISE keyword:

select

when name="Bob" then

say "It’s Bob"

when name="Mary" then do

say "Hello Mary"

marycount=marycount+1

end

otherwise

say "I’m sorry. I don’t know you."

anonymous=anonymous+1

end /* select */

Many Basic implementations have several different instructions for loops. Rexx only knows the
DO/END pair. All of the traditional looping variations are incorporated into the DO instruction:

do i=1 to 10 /* Simple loop */

say i

end

do i=1 to 10 by 2 /* Increment count by two */

say i

end

b=3; a=0 /* DO WHILE - the conditional expression */

do while a<b /* is evaluated before the instructions */

say a /* in the loop are executed. If the */

a=a+1 /* expression isn’t true at the outset, */

end /* instructions are not executed at all. */

a=5 /* DO UNTIL - like many other languages, */

b=4 /* a Rexx DO UNTIL block is executed at */

do until a>b /* least once. The expression is */

say "Until loop" /* evaluated at the end of the loop. */

end

17

Chapter 3. A Quick Tour of Traditional Rexx

Rexx also has a FOREVER keyword. Use the LEAVE, RETURN, or EXIT instructions to break out of
the loop:

/* Program to emulate your five-year-old child */

num=random(1,10) /* To emulate a three-year-old, move this inside the loop! */

do forever

say "What number from 1 to 10 am I thinking of?"

pull guess

if guess=num then do

say "That’s correct"

leave

end

say "No, guess again..."

end

Rexx also includes an ITERATE instruction, which skips the rest of the instructions in that iteration of
the loop:

do i=1 to 100

/* Iterate when the "special case" value is reached */

if i=5 then iterate

/* Instructions used for all other cases would be here */

end

You can use loops in IF or SELECT instructions:

/* Say hello ten times if I is equal to 1 */

if i=1 then

do j=1 to 10

say "Hello!"

end

There is an equivalent to the Basic GOTO statement: the Rexx SIGNAL instruction. SIGNAL causes
control to branch to a label:

Signal fred; /* Transfer control to label FRED below */

....

....

Fred: say "Hi!"

As with GOTO, you need to be careful about how you use SIGNAL. In particular, do not place SIGNAL
in the middle of a DO/END block or into a SELECT structure.

3.11. Subroutines and Procedures
In Rexx you can write routines that make all variables accessible to the called routine. You can also write
routines that hide the caller’s variables.

The following shows an example of a routine in which all variables are accessible:

18

Chapter 3. A Quick Tour of Traditional Rexx

/* Routine example */

i=10 /* Initialize I */

call myroutine /* Call routine */

say i /* Displays 22 */

exit /* End main program */

myroutine: /* Label */

i=i+12 /* Increment I */

return

The CALL instruction calls routine MYROUTINE. A label (note the colon) marks the start of the
routine. A RETURN instruction ends the routine. Notice that an EXIT instruction is required in this
case to end the main program. If EXIT is omitted, Rexx assumes that the following instructions are part
of your main program and will execute those instructions. The SAY instruction displays 22 instead of 10
because the caller’s variables are accessible to the routine.

You can return a result to the caller by placing an expression in the RETURN instruction, like this:

/* Routine with result */

i=10 /* Initialize I */

call myroutine /* Call routine */

say result /* Displays 22 */

exit /* End main program */

myroutine: /* Label */

return i+12 /* Increment I */

The returned result is available to the caller in the special variable RESULT, as previously shown. If
your routine returns a result, you can call it as a function:

/* Routine with result called as function */

i=10 /* Initialize I */

say myroutine() /* Displays 22 */

exit /* End main program */

myroutine: /* Label */

return i+12 /* Increment I */

You can pass arguments to this sort of routine, but all variables are available to the routine anyway.

You can also write routines that separate the caller’s variables from the routine’s variables. This
eliminates the risk of accidentally writing over a variable used by the caller or by some other unprotected
routine. To get protection, use the PROCEDURE instruction, as follows:

/* Routine example using PROCEDURE instruction */

headcount=0

tailcount=0

/* Toss a coin 100 times, report results */

do i=1 to 100

call cointoss /* Flip the coin */

if result="HEADS" then headcount=headcount+1 /* Increment counters */

else tailcount=tailcount+1

/* Report results */

say "Toss is" result ||". Heads=" headcount "Tails=" tailcount

19

Chapter 3. A Quick Tour of Traditional Rexx

end /* do */

exit /* End main program */

cointoss: procedure /* Use PROCEDURE to protect caller */

i=random(1,2) /* Pick a random number: 1 or 2 */

if i=1 then return "HEADS" /* Return English string */

return "TAILS"

In this example, the variable i is used in both the main program and the routine. When the PROCEDURE
instruction is placed after the routine label, the routine’s variables become local variables. They are
isolated from all other variables in the program. Without the PROCEDURE instruction, the program
would loop indefinitely. On each iteration the value ofi would be reset to some value less than 100,
which means the loop would never end. If a programming error causes your procedure to loop
indefinitely, use the Ctrl+Break key combination or close the Windows session to end the procedure.

To access variables outside the routine, add an EXPOSE operand to the PROCEDURE instruction. List
the desired variables after the EXPOSE keyword:

/* Routine example using PROCEDURE instruction with EXPOSE operand */

headcount=0

tailcount=0

/* Toss a coin 100 times, report results */

do i=1 to 100

call cointoss /* Flip the coin */

say "Toss is" result ||". Heads=" headcount "Tails=" tailcount

end /* do */

exit /* End main program */

cointoss: procedure expose headcount tailcount /* Expose the counter variables */

if random(1,2)=1 then do /* Pick a random number: 1 or 2 */

headcount=headcount+1 /* Bump counter... */

return "HEADS" /* ...and return English string */

end

else

tailcount=tailcount+1

return "TAILS"

To pass arguments to a routine, separate the arguments with commas:

call myroutine arg1, "literal arg", arg3 /* Call as subroutine */

myrc=myroutine(arg1, "literal arg", arg3) /* Call as function */

In the routine, use the PARSE ARG instruction to retrieve the argument.

20

Chapter 4. Into the Object World
Object Rexx includes features typical of an object-oriented language--features like subclassing,
polymorphism, and data encapsulation. Object Rexx is an extension of the traditional Rexx language,
which has been expanded to include classes, objects, and methods. These extensions do not replace
traditional Rexx functions, or preclude the development or running of traditional Rexx programs. You
can program as before, program with objects, or mix objects with regular Rexx instructions. The Rexx
programming concepts that support the object-oriented features are described in this chapter.

4.1. What Is Object-Oriented Programming?
Object-oriented programming is a way to write computer programs by focusing not on the instructions
and operations a program uses to manipulate data, but on the data itself. First, the program simulates, or
models, objects in the physical world as closely as possible. Then the objects interact with each other to
produce the desired result.

Real-world objects, such as a company’s employees, money in a bank account, or a report, are stored as
data so the computer can act upon it. For example, when you print a report, print is the action and report
is the object acted upon. Often several actions apply; you could also send or erase the report.

4.2. Modularizing Data
In conventional, structured programming, actions like print are often isolated from the data by placing
them in subroutines or modules. A module typically contains an operation for implementing one simple
action. You might have a PRINT module, a SEND module, an ERASE module. These actions are
independent of the data they operate on.

21

Chapter 4. Into the Object World

But with object-oriented programming, it is the data that is modularized. And each data module includes
its own operations for performing actions directly related to its data.

Figure 4-1. Modular Data--a Report Object

In the case of report, the report object would contain its own built-in PRINT, SEND, ERASE, and FILE
operations.

Object-oriented programming lets you model real-world objects--even very complex ones--precisely and
elegantly. As a result, object manipulation becomes easier and computer instructions become simpler and
can be modified later with minimal effort.

Object-oriented programming hides any information that is not important for acting on an object, thereby
concealing the object’s complexities. Complex tasks can then be initiated simply, at a very high level.

4.3. Modeling Objects
In object-oriented programming, objects are modeled to real-world objects. A real-world object has
actions related to it and characteristics of its own.

Take a ball, for example. A ball can be acted on--rolled, tossed, thrown, bounced, caught. But it also has
its own physical characteristics--size, shape, composition, weight, color, speed, position. An accurate
data model of a real ball would define not only the physical characteristics but all related actions and
characteristics in one package:

22

Chapter 4. Into the Object World

Figure 4-2. A Ball Object

In object-oriented programming, objects are the basic building blocks--the fundamental units of data.

There are many kinds of objects; for example, character strings, collections, and input and output
streams. An object--such as a character string--always consists of two parts: the possible actions or
operations related to it, and its characteristics or variables. A variable has a variable name, and an
associated data value that can change over time. These actions and characteristics are so closely
associated that they cannot be separated:

Figure 4-3. Ball Object with Variable Names and Values

To access an object’s data, you must always specify an action. For example, suppose the object is the
number5. Its actions might include addition, subtraction, multiplication, and division. Each of these
actions is an interface to the object’s data. The data is said to be encapsulated because the only way to
access it is through one of these surrounding actions. The encapsulated internal characteristics of an
object are its variables. Variables are associated with an object and exist for the lifetime of that object:

23

Chapter 4. Into the Object World

Figure 4-4. Encapsulated 5 Object

Rexx comes with a basic set of classes for creating objects (seeThe Basics of Classes). Therefore, you
can create objects that exactly match the needs of a particular application.

4.4. How Objects Interact
The actions within an object are its only interface to other objects. Actions form a kind of "wall" that
encapsulates the object, and shields its internal information from outside objects. This shielding is called
information hiding. Information hiding protects an object’s data from corruption by outside objects, and
also protects outside objects from relying on another object’s private data, which can change without
warning.

One object can act upon another (or cause it to act) only by calling that object’s actions, namely by
sending messages. Objects respond to these messages by performing an action, returning data, or both.
A message to an object must specify:

• A receiving object

• The "message send" symbol, ~, which is called the twiddle

• The action and, optionally in parentheses, any parameters required

So the message format looks like this:

object~action(parameters)

Assume that the object is the string!iH. Sending it a message to use its REVERSE action:

"!iH"~reverse

returns the string objectHi!.

24

Chapter 4. Into the Object World

4.5. Methods
Sending a message to an object results in performing some action; that is, it results in running some
underlying code. The action-generating code is called a method. When you send a message to an object,
you specify its method name in the message. Method names are character strings like REVERSE. In the
preceding example, sending thereverse message to the!iH object causes it to run the REVERSE
method. Most objects are capable of more than one action, and so have a number of available methods.

The classes Rexx provides include their own predefined methods. The Message class, for example, has
the COMPLETED, INIT, NOTIFY, RESULT, SEND, and START methods. When you create your own
classes, you can write new methods for them in Rexx code. Much of the object programming in Rexx is
writing the code for the methods you create.

4.6. Polymorphism
Rexx lets you send the same message to objects that are different:

"!iH"~reverse /* Reverses the characters "!iH" to form "Hi!" */

pen~reverse /* Reverses the direction of a plotter pen */

ball~reverse /* Reverses the direction of a moving ball */

As long as each object has its own REVERSE method, REVERSE runs even if the programming
implementation is different for each object. This ability to hide different functions behind a common
interface is called polymorphism. As a result of information hiding, each object in the previous example
knows only its own version of REVERSE. And even though the objects are different, each reverses itself
as dictated by its own code.

Although the!iH object’s REVERSE code is different from the plotter pen’s, the method name can be
the same because Rexx keeps track of the methods each object owns. The ability to reuse the same
method name so that one message can initiate more than one function is another feature of
polymorphism. You do not need to have several message names like REVERSE_STRING,
REVERSE_PEN, REVERSE_BALL. This keeps method-naming schemes simple and makes complex
programs easy to follow and modify.

The ability to hide the various implementations of a method while leaving the interface the same
illustrates polymorphism at its lowest level. On a higher level, polymorphism permits extensive code
reuse.

4.7. Classes and Instances
In Rexx, objects are organized into classes. Classes are like templates; they define the methods and
variables that a group of similar objects have in common and store them in one place.

If you write a program to manipulate some screen icons, for example, you might create an Icon class. In
that Icon class you can include all the icon objects with similar actions and characteristics:

25

Chapter 4. Into the Object World

Figure 4-5. A Simple Class

All the icon objects might use common methods like DRAW or ERASE. They might contain common
variables like position, color, or size. What makes each icon object different from one another is the data
assigned to its variables. For the Windows system icon, it might beposition="20,20" while for the
shredder it is"20,30" and for information it is"20,40"

Figure 4-6. Icon Class

Objects that belong to a class are called instances of that class. As instances of the Icon class, the
Windows system icon, shredder icon, and information icon acquire the methods and variables of that
class. Instances behave as if they each had their own methods and variables of the same name. All
instances, however, have their own unique properties--the data associated with the variables. Everything
else can be stored at the class level.

26

Chapter 4. Into the Object World

Figure 4-7. Instances of the Icon Class

If you must update or change a particular method, you only have to change it at one place, at the class
level. This single update is then acquired by every new instance that uses the method.

A class that can create instances of an object is called an object class. The Icon class is an object class
you can use to create other objects with similar properties, such as an application icon or a drives icon.

An object class is like a factory for producing instances of the objects.

4.8. Data Abstraction
The ability to create new, high-level data types and organize them into a meaningful class structure is
called data abstraction. Data abstraction is at the core of object-oriented programming. Once you model
objects with real-world properties from the basic data types, you can continue creating, assembling, and
combining them into increasingly complex objects. Then you can use these objects as if they were part of
the original programming language.

4.9. Subclasses, Superclasses, and Inheritance
When you write your first object-oriented program, you do not have to begin your real-world modeling
from scratch. Rexx provides predefined classes and methods. From there you can create additional
classes and methods of your own, according to your needs.

Rexx classes are hierarchical. The original class is called a base class or a superclass. The derived class is
called a subclass. Subclasses inherit methods and data from one or more superclasses. A subclass can
introduce new methods and data, and can override methods from the superclass.

27

Chapter 4. Into the Object World

Figure 4-8. Superclass and Subclasses

You can add a class to an existing superclass. For example, you might add the Icon class to the
Screen-Object superclass:

Figure 4-9. The Screen-Object Superclass

In this way, the subclass inherits additional methods from the superclass. A class can have more than one
superclass, for example, subclass Bitmap might have the superclasses Screen-Object and Art-Object.
Acquiring methods and variables from more than one superclass is known as multiple inheritance:

Figure 4-10. Multiple Inheritance

28

Chapter 5. The Basics of Classes
Similar objects in Rexx are grouped into classes, forming a hierarchy. Rexx gives you a basic class
hierarchy to start with. All of the classes in the hierarchy are described in detail in theOpen Object Rexx:
Reference. The following list shows the classes Rexx provides (there may be others in the system). The
classes indented are subclasses. Classes in the list that are described later in this chapter are printed in
bold:

Object

Alarm

Class

Collection classes

Array

List

Queue

Table

Set

Directory

Relation

Bag

Message

Method

Monitor

Stem

Stream

String

Supplier

5.1. Rexx Classes for Programming
The classes Rexx supplies provide the starting point for object-oriented programming. Some key classes
that you are likely to work with are described in the following sections.

5.1.1. The Alarm Class
The Alarm class is used to create objects with timing and notification capability. An alarm object is able
to send a message to an object at any time in the future, and until then, you can cancel the alarm.

5.1.2. The Collection Classes
The collection classes are used to manipulate collections of objects. A collection is an object that
contains a number ofitems, which can be any objects. These manipulations might include counting
objects, organizing them, or assigning them a supplier (for example, to indicate that a specific assortment
of baked goods is supplied by the Pie-by-Night Bakery).

29

Chapter 5. The Basics of Classes

Rexx includes classes, for example, for arrays, lists, queues, tables, and directories. Each item stored in a
Rexx collection has an associated index that you can use to retrieve the item from the collection with the
AT or [] (left and right bracket) methods, and each collection defines its own acceptable index types:

Array

A sequenced collection of objects ordered by whole-number indexes.

List

A sequenced collection that lets you add new items at any position in the sequence. A list generates
and returns an index value for each item placed in the list. The returned index remains valid until the
item is removed from the list.

Queue

A sequenced collection of items ordered as a queue. You can remove items from the head of the
queue and add items at either its tail or its head. Queues index the items with whole-number
indexes, in the order in which the items would be removed. The current head of the queue has index
1, the item after the head item has index 2, up to the number of items in the queue.

Table

A collection of indexes that can be any object. For example, string objects, array objects, alarm
objects, or any user-created object can be a table index. The Table class determines an index match
by using the == comparison method to test for strict equality. A table contains no duplicate indexes.

Directory

A collection of character string indexes. Indexes are compared using the string == comparison
method to test for strict equality.

Relation

A collection of indexes that can be any object (as with the Table class). A relation can contain
duplicate indexes.

Set

A collection where the indexes are equal to the values. Set indexes can be any object (as with the
Table class) and each index is unique.

Bag

A collection where the index is equal to the value. Bag indexes can be any object (as with the Table
class) and each index can appear more than once.

5.1.3. The Message Class
To manipulate message objects, you use the Message class. Methods created for this class are used, for
example, to send a message, to notify the sender object when an error occurs or when message
processing is complete, to return the results of that processing to the sender or to some other object, or to
process the message object concurrently with the sender object.

30

Chapter 5. The Basics of Classes

5.1.4. The Monitor Class
The Monitor class provides a way to forward messages to a specified destination. Monitor methods let
you initialize a monitor object, specify a destination object or use a previously specified one, and obtain
the name of the current destination object.

5.1.5. The Stem Class
A stem is a symbol that must start with a letter and end with a period, like "FRED." or "A.". The value of
a stem is a stem object by default. A stem object is a collection of unique indexes that are character
strings. Stem objects are automatically created when a Rexx stem variable or Rexx compound variable is
used. In addition to the items assigned to the collection indexes, a stem object also has a default value
that is used for all uninitialized indexes of the collection. You can assign a default value to a stem object
and later retrieve this value.

5.1.6. The Stream Class
Input and output streams let Rexx communicate with external objects, such as people, files, queues,
serial interfaces, displays, and networks. In programming there are many stream actions that can be
coded as methods for manipulating the various stream objects. These methods and objects are organized
in the Stream class.

The methods are used to open streams for reading or writing, close streams at the end of an operation,
move the line-read or line-write position within a file stream, or get information about a stream. Methods
are also provided to get character strings from a stream or send them to a stream, count characters in a
stream, flush buffered data to a stream, query path specifications, time stamps, size, and other
information from a stream, or do any other I/O stream manipulation (seeInput and Outputfor examples).

5.1.7. The String Class
Strings are data values that can have any length and contain any characters. They are subject to logical
operations like AND, OR, exclusive OR, and logical NOT. Strings can be concatenated, copied, reversed,
joined, and split. When strings are numeric, there is the need to perform arithmetic operations on them or
find their absolute value or convert them from binary to hexadecimal, and vice versa. All this and more
can be accomplished using the String class of objects.

5.1.8. The Supplier Class
Some collections have suppliers: a bakery, for example, can supply certain breads, cookies, cakes and
pies; a financial report can supply certain data, statistics, tables, and reports. The Supplier class is used to
enumerate items that a collection contained when the supplier was created. For example, this class
contains methods to verify if an item is available from a supplier (Does the Pie-by-Night Bakery sell
chocolate cake?). Another method returns the index of the current item in a collection (What is the
position of the apple pie record?). Others return the current collection item in a collection object, and the
next item in the collection.

31

Chapter 5. The Basics of Classes

5.2. Rexx Classes for Organizing Objects
Rexx provides several key classes that form the basis for building class hierarchies.

5.2.1. The Object Class
Because the topmost class in the hierarchy, or the root class, is the Object class, everything below it is an
object. To interact with each other, objects require their own actions, called methods. These methods,
which encode actions that are needed by all objects, belong to the Object class.

Every other class in the hierarchy inherits the methods of the root class. Inheritance is the handing down
of methods from a "parent" class--called a superclass--to all of its "descendent" classes--called
subclasses. Finally, instances acquire methods from their classes. Any method created for the Object
class is automatically made available to every other class in the hierarchy.

5.2.2. The Class Class
The Class class is used for generating new classes. If a class is like a factory for producing instances,
Class is like a factory for producing factories. Class is the parent of every new class in the hierarchy, and
these all inherit Class-like characteristics. Class-like characteristics are methods and related variables,
which reside in Class, to be used by all classes.

A class that can be used to create another class is called a metaclass. The Class class is unique among
Rexx classes in that it is the only metaclass that Rexx provides (seeMetaclasses). As such, the Class’s
methods not only make new classes, they make methods for use by the new class and its instances. They
also make methods that only the new class itself can use, but not its instances. These are called class
methods. They give a new class some power that is denied to its instances.

Because each instance of Class is another class, that class inherits the Class’s instance methods as class
methods. Thus if Class generates a Pizza factory instance, the factory-running actions (Class’s instance
methods) become the class methods of the Pizza factory. Factory operations are class methods, and any
new methods created to manipulate pizzas would be instance methods:

32

Chapter 5. The Basics of Classes

Figure 5-1. How Subclasses Inherit Instance Methods from the Class Class

As a programmer, you typically create classes by using directives, rather than the methods of the Class
class. In particular, you’ll use the ::CLASS directive, described later in this section. The ::CLASS
directive is a kind of Rexx clause that allows class definitions to be saved permanently, in a file, where
they can be reused by other programs. Creating classes by using Class methods sent as messages is not
recommended if permanency or reuse is required. At any rate, directives have class-creating powers
similar to the Class methods.

5.3. Rexx Classes: The Big Picture
The following figure diagrams the supplied Rexx classes, along with their methods.

Figure 5-2. Classes and Inheritance of Methods (part 1 of 4)

+---+

33

Chapter 5. The Basics of Classes

| Object |

+-----------+----------+----------------+----------+----------+-------------+

NEW* | | | | |

= +-------+ +--------+ +-------+ +------+ +-------+

== | Alarm | | Class* | | Array | | List | | Queue |

\= +-------+ +--------+ +-------+ +------+ +-------+

<> CANCEL BASECLASS NEW OF* []

>< INIT DEFAULTNAME OF* [] []=

\== DEFINE [] []= AT

CLASS DELETE []= AT HASINDEX

COPY ENHANCED AT FIRST ITEMS

DEFAULTNAME ID DIMENSION FIRSTITEM MAKEARRAY

HASMETHOD INHERIT FIRST HASINDEX PEEK

INIT INIT HASINDEX INSERT PULL

OBJECTNAME METACLASS ITEMS ITEMS PUSH

OBJECTNAME= METHOD LAST LAST PUT

REQUEST METHODS MAKEARRAY LASTITEM QUEUE

RUN MIXINCLASS NEXT MAKEARRAY REMOVE

SETMETHOD NEW PREVIOUS NEXT SUPPLIER

START QUERYMIXINCLASS PUT PREVIOUS

STRING SUBCLASS REMOVE PUT

UNSETMETHOD SUBCLASSES SECTION REMOVE

SUPERCLASSES SIZE SECTION

UNINHERIT SUPPLIER SUPPLIER

* All of the methods under the Class class are both class and instance

methods.NEW and OF are class methods.

Figure 5-3. Classes and Inheritance of Methods (Part 2 of 4)

+---+

| Object (continued) |

+---------------+--------------+---------------+------------+---------------+

| | | | |

+-------+ +-----------+ +----------+ +---------+ +--------+

| Table | | Directory | | Relation | | Message | | Method |

+-------+ +-----------+ +----------+ +---------+ +--------+

| [] [] | [] COMPLETED NEW*

| []= []= | []= INIT NEWFILE

| AT DIFFERENCE | ALLAT NOTIFY SETGUARDED

| DIFFERENCE HASINDEX | ALLINDEX RESULT SETPRIVATE

| HASINDEX INTERSECTION | AT SEND SETPROTECTED

| INTERSECTION ITEMS | DIFFERENCE START SETSECURITYMANAGER

| ITEMS MAKEARRAY | HASINDEX SETUNGUARDED

| MAKEARRAY PUT | HASITEM SOURCE

| PUT REMOVE | INDEX

| REMOVE SETENTRY | INTERSECTION

| SUBSET SETMETHOD | ITEMS

| SUPPLIER SUBSET | MAKEARRAY

| UNION SUPPLIER | PUT

34

Chapter 5. The Basics of Classes

| XOR UNION | REMOVE

| UNKNOWN | REMOVEITM

+-----+ XOR | SUBSET

| Set | | SUPPLIER

+-----+ | UNION

OF* | XOR

[] |

[]= +-----+

AT | Bag |

HASINDEX +-----+

ITEMS OF*

MAKEARRAY []

PUT []=

REMOVE HASINDEX

SUPPLIER MAKEARRAY

PUT

SUPPLIER

* All of the methods under the Class class are both class and instance

methods.NEW and OF are class methods.

Figure 5-4. Classes and Inheritance of Methods (Part 3 of 4)

+---+

| Object (continued) |

+------------+------------------+----------+--------------------------------+

| | | |

+---------+ +---------------+ +------+ +--------+

| Monitor | | MutableBuffer | | Stem | | Stream |

+---------+ +---------------+ +------+ +--------+

CURRENT APPEND NEW* ARRAYIN

DESTINATION DELETE [] ARRAYOUT

INIT GETBUFFERSIZE []= CHARIN

UNKNOWN INIT MAKEARRAY CHAROUT

INSERT REQUEST CHARS

LENGTH UNKNOWN CLOSE

OVERLAY COMMAND

SETBUFFERSIZE DESCRIPTION

STRING FLUSH

SUBSTR INIT

LINEIN

LINEOUT

LINES

MAKEARRAY

OPEN

POSITION

QUALIFY

QUERY

SEEK

STATE

35

Chapter 5. The Basics of Classes

SUPPLIER

* All of the methods under the Class class are both class and instance

methods.NEW and OF are class methods.

Figure 5-5. Classes and Inheritance of Methods (Part 4 of 4)

+---+

| Object (continued) |

+-----------------------------+---+

| |

+--------+ +----------+

| String | | Supplier |

+--------+ +----------+

NEW FORMAT NEW*

"" (abuttal) INSERT AVAILABLE

(arithmetic:) LASTPOS INDEX

+ - * / % // ** LEFT ITEM

’ ’ (blank) LENGTH NEXT

ABBREV (logical:)

ABS & && |

BITAND \

BITOR MAKESTRING

BITXOR MAX

B2X MIN

CENTER OVERLAY

CHANGESTR POS

COMPARE REVERSE

(comparison:) RIGHT

= \= <> >< SIGN

> >= \> SPACE

< <= \< STRING

== \== STRIP

>> \>> >>= SUBSTR

<< \<< <<= SUBWORD

(concatenation:) TRANSLATE

|| TRUNC

COPIES VERIFY

COUNTSTR WORD

C2D WORDINDEX

C2X WORDLENGTH

DATATYPE WORDPOS

DELSTR WORDS

DELWORD X2B

D2C X2C

D2X X2D

* All of the methods under the Class class are both class and instance

36

Chapter 5. The Basics of Classes

methods.NEW and OF are class methods.

5.4. Creating Your Own Classes Using Directives
By analyzing your problem in terms of objects, you can determine what classes need to be created. You
can create a class using messages or directives. Directives are a new kind of Rexx clause, and they are
preferred over messages because the code is easier to read and understand, especially in large programs.
They also provide an easy way for you to save your class definitions and share them with others using the
PUBLIC option.

5.4.1. What Are Directives?
A Rexx program is made up of one or more executable units. Directives separate these units, which
themselves are Rexx programs. Rexx processes all directives first to set up any classes, methods, or
routines needed by the program. Then it runs any code that exists before the first directive. The first
directive in a program marks the end of the executable part of the program. A directive is a kind of clause
that begins with a double-colon (::) and is non-executable (a directive cannot appear in the expression of
an INTERPRET instruction, for example).

5.4.2. The Directives Rexx Provides
The following is a short summary of all the Rexx directives. See theOpen Object Rexx: Referencefor
more details on, or examples of, any of these Rexx directives.

5.4.2.1. The ::CLASS Directive

You use the ::CLASS directive to create a class. Programs can then use the new class by specifying it as a
Rexx environment symbol (the class name preceded by a period) in the program. For example, inA
Sample Program Using Directives, the Savings class is created using the ::CLASS directive. A program
can then use the new class by specifying it as an environment symbol, ".savings".

The new class that you create acquires any methods defined by subsequent ::METHOD directives within
the program, until either another ::CLASS directive or the end of the program is reached.

You can use the ::CLASS directive’s SUBCLASS option to make the new class the subclass of another.
In A Sample Program Using Directives, the Savings class is made a subclass of the Account class. A
subclass inherits instance and class methods from its specified superclass; in the sample, Savings inherits
from Account.

Additional ::CLASS directive options are available for:

• Inheriting instance methods from a specified metaclass as class methods of the new class (the
METACLASS option). For more information on metaclasses, seeMetaclasses.

• Making the new class available to programs outside its containing Rexx program (the PUBLIC
option). The outside program must refer to the new class by using a ::REQUIRES directive.

37

Chapter 5. The Basics of Classes

• Subclassing the new class to a mixin class in order to inherit its instance and class methods (the
MIXINCLASS option).

• Adding the instance and class methods of a mixin class to the new class, without subclassing it (the
INHERIT option).

When you create a new class, it is always a subclass of an existing class. If you do not specify the
SUBCLASS or MIXINCLASS option on the ::CLASS directive, the superclass for the new class is the
Object class.

Your class definition can be in a file of its own, with no executable code preceding it. For example, when
you define classes and methods to be shared by several programs, you put the executable code in another
file and refer to the class file using a ::REQUIRES directive.

Rexx processes ::CLASS directives in the order in which they appear, unless there is a dependency on
some later directive’s processing. You cannot create two classes that have the same class name in one
program. If several programs contain classes with the same name, the last ::CLASS directive processed
is used.

5.4.2.2. The ::METHOD Directive

The ::CLASS directive is usually followed by a ::METHOD directive, which is used to create a method
for that class and define the method’s attributes. The next directive in the program, or the end of the
program, ends the method.

Some classes you define have an INIT method. INIT is called whenever a NEW message is sent to a
class. The INIT method must contain whatever code is needed to initialize the object.

It is not required that a ::METHOD directive be preceded by a ::CLASS directive. However, without it
the method is only accessible by the executable part of the program through Rexx’s .METHODS
environment symbol. This symbol identifies a directory of methods that you can refer to by name. For
each method name only one method directive can appear that is not associated with a class.

The ::METHOD directive can be used for:

• Creating a class method for the most-recent ::CLASS directive (the CLASS option).

• Creating a private method; that is, a method that works like a subroutine and can only be activated by
the object it belongs to--otherwise the method is public by default, and any sender can activate it.

• Creating a method that can be called while other methods are active on the same object, as described
in Activating Methods(the UNGUARDED option).

• Creating the instance methodsmethod_nameandmethod_name= for the preceding ::CLASS directive
(the ATTRIBUTE option).

5.4.2.3. The ::ROUTINE Directive

You use the ::ROUTINE directive to create a named routine within a program. The ::ROUTINE directive
starts the named routine and another directive (or the end of the program) ends the routine.

38

Chapter 5. The Basics of Classes

The ::ROUTINE directive is useful for defining lower-level routines that are called by several methods.
These methods might be in unrelated classes or in different applications. You use ::ROUTINE when you
have a utility that you do not want to appear as a method.

The ::ROUTINE directive includes a PUBLIC option for making the routine available to programs
outside its containing Rexx program. The outside program must reference the routine by using a
::REQUIRES directive.

Only one ::ROUTINE directive can appear for a routine name within a program.

5.4.2.4. The ::REQUIRES Directive

You use the ::REQUIRES directive when a program needs access to the classes and objects of another
program. This directive has the following form:

::REQUIRES <emphasis role="italic">program_name</emphasis>

The ::REQUIRES directive must precede all other directives, and the order of the ::REQUIRES
directives determines the search order for the classes and routines defined in the named programs.

Local routine or class definitions within a program override routines or classes of the same name in
programs that are accessed through ::REQUIRES directives. Another directive (or the end of the
program) must follow a ::REQUIRES directive.

5.4.3. How Directives Are Processed
You place a directive (and its method code) after the program code. When you run a program containing
directives, Rexx:

1. Processes the directives first, to set up the program’s classes, methods, and routines.

2. Runs any program code preceding the first directive. This code can use any classes, methods, and
routines set up by the directives.

Once Rexx has processed the code preceding the directive, any public classes and objects the
program defines are available to programs having the appropriate ::REQUIRES directive.

5.4.4. A Sample Program Using Directives
Here is a program that uses directives to create new classes and methods:

asav = .savings~new /* executable code begins */

say asav~type /* executable code */

asav~name= "John Smith" /* executable code ends */

::class Account /* directives begin ... */

39

Chapter 5. The Basics of Classes

::method "TYPE"

return "an account"

::method "NAME="

expose name

use arg name

::class Savings subclass Account

::method "TYPE"

return "a savings account" /* ... directives end */

The preceding program uses the ::CLASS directive to create two classes, the Account class and its
Savings subclass. In the::class Account expression, the ::CLASS directive precedes the name of the
new class, Account.

The example program also uses the ::METHOD directive to create TYPE and NAME= methods for
Account. In the::method "TYPE" expression, the ::METHOD directive precedes the method name, and
is immediately followed by the code for the method. Methods for any new class follow its ::CLASS
directive in the program, and precede the next ::CLASS directive.

In the::method "NAME=" method, the USE ARG instruction retrieves the argument. The EXPOSE
instruction, which must immediately follow the ::METHOD directive, makes the value (here, "John
Smith") available for use by other methods. A variable in an EXPOSE instruction is called an object
variable.

You do not have to associate object variables with a specific object. Rexx keeps track of object variables
for you. Whenever you send a message to savings account Asav, which points to the Name object, Rexx
knows what internal object value to use. If you assign another value to Asav (such as "Mary Smith"),
Rexx deletes the object that was associated with Asav ("John Smith") as part of its normal
garbage-collection operations.

In the Savings subclass, a second TYPE method is created that supersedes the TYPE method Savings
would otherwise have inherited from Account. Note that the directives appear after the program code.

5.4.5. Another Sample Program
A directive is nonexecutable code that begins with a double colon (::) and follows the program code. The
::CLASS directive creates a class; in this example, the Dinosaur class. The sample provides two methods
for the Dinosaur class, INIT and DIET. These are added to the Dinosaur class using the ::METHOD
directives. After the line containing the ::METHOD directive, the code for the method is specified.
Methods are ended either by the start of the next directive or by the end of the program.

Because directives must follow the executable code in your program, you put that code first. In this case,
the executable code creates a new dinosaur, Dino, that is an instance of the Dinosaur class. Rexx then
runs the INIT method. Rexx runs any INIT method automatically whenever the NEW message is
received. Here the INIT method is used to identify the type of dinosaur. Then the program runs the DIET
method to determine whether the dinosaur eats meat or vegetables. Rexx saves the information returned
by INIT and DIET as variables in the Dino object.

In the example, the Dinosaur class and its two methods are defined following the executable program
code:

40

Chapter 5. The Basics of Classes

dino=.dinosaur~new /* Create a new dinosaur instance and

/* initialize variables */

dino~diet /* Run the DIET method */

exit

::class Dinosaur /* Create the Dinosaur class */

::method init /* Create the INIT method */

expose type

say "Enter a type of dinosaur."

pull type

return

::method diet /* Create the DIET method */

expose type

select

when type="T-REX" then string="Meat-eater"

when type="TYRANNOSAUR" then string="Meat-eater"

when type="TYRANNOSAURUS REX" then string="Meat-eater"

when type="DILOPHOSAUR" then string="Meat-eater"

when type="VELICORAPTOR" then string="Meat-eater"

when type="RAPTOR" then string="Meat-eater"

when type="ALLOSAUR" then string="Meat-eater"

when type="BRONTOSAUR" then string="Plant-eater"

when type="BRACHIOSAUR" then string="Plant-eater"

when type="STEGOSAUR" then string="Plant-eater"

otherwise string="Type of dinosaur or diet unknown"

end

say string

return 0

5.5. Creating Classes Using Messages
You can create a class using messages as well as directives. Though classes are available only to the
program that creates them, there are occasions when this is useful and public availability is not required.
The following sections demonstrate the message technique using the Savings Account example
previously shown with directives.

5.5.1. Defining a New Class
To define a new class using messages, you send a SUBCLASS message to the new class’s superclass.
That is, you send the message to the class that precedes the new class in the hierarchy. To define a
subclass of the Object class called Account, you enter:

account = .object~subclass("Account")

41

Chapter 5. The Basics of Classes

Here,.object is a reference to the Rexx Object class..object is an environment symbol indicating the
intention to create a new class that is a subclass of the Object class. Environment symbols represent
objects in a directory of public objects, called the Environment object. These public objects are available
to all other objects, and include all the classes that Rexx provides. Environment symbols begin with a
period and are followed by the class name. Thus the Object class is represented by.object, the Alarm
class by.alarm, the Array class by.array, and so on.

The twiddle (~) is the "message send" symbol,subclass is a method of Class, and the string identifier in
parentheses is an argument of SUBCLASS that names the new class, Account.

5.5.2. Adding a Method to a Class
You use the DEFINE method to define methods for your new class. To define a TYPE method and a
NAME= method, you enter:

account~define("TYPE", "return ""an account""")

account~define("NAME=", "expose name; use arg name")

5.5.3. Defining a Subclass of the New Class
Using the SUBCLASS method, you can define a subclass for your new class and then a method for that
subclass. To define a Savings subclass for the Account class, and a TYPE method for Savings, you enter:

savings = account~subclass("Savings Account")

savings~define("TYPE", "return ""a savings account""")

5.5.4. Defining an Instance
You use the NEW method to define an instance of the new class, and then call methods that the instance
inherited from its superclass. To define an instance of the Savings class named "John Smith," and send
John Smith the TYPE and NAME= messages to call the related methods, you enter:

newaccount = savings~new

say newaccount~type

newaccount~name = "John Smith"

5.6. Types of Classes
In Rexx there are three class types:

• Object classes

• Abstract classes

42

Chapter 5. The Basics of Classes

• Mixin classes

An object class (the default) can create instances of the object in response to receiving a NEW or
ENHANCED message. An abstract class serves mainly to organize other classes in the hierarchy and
define their message interface. A mixin class, through multiple inheritance, is an additional superclass to
a class. The mixin class typically possesses methods useful to the class that inherits it, but these must be
specifically added because they lie outside the class’s normal line of inheritance.

The following sections explain these class types in more detail.

5.6.1. Object Classes
An object class creates instances and provides methods that these instances can use. At the time of its
creation, an instance acquires all instance methods of the class it belongs to. If a class adds new methods
later, existing instances do not acquire them. Instances created after the new methods do acquire them.

Because classes define methods for their instances, and methods define the variables that instances use,
object classes are factories for creating Rexx instances. The Array class is an example of an object class.

5.6.2. Abstract Classes
An abstract class defines methods its subclasses can inherit, but typically has no instances. Rather, it
serves to organize other classes in the hierarchy. An abstract class can be used to "filter out" a group of
shared methods from a number of subclasses, so they do not have to exist in two places.

An abstract class pushes common elements further up the hierarchy, thus providing a higher level of
organization. By filtering out and moving common methods upwards, the abstract class refines the
message interface for its subclasses. This lays the groundwork for polymorphism, creating well-defined
interfaces for users of the hierarchy. Abstract classes inherit the instance methods of the Class class.

You can create a new abstract class like an object class. You use a simple ::CLASS directive; no options
are required. While abstract classes are not intended for creating instances, Rexx does not prevent you
from doing so.

5.6.3. Mixin Classes
The mixin class lets you optionally add a set of instance and class methods to one or more other classes
using inheritance. You use mixins to extend the scope of a class beyond the usual lines of inheritance
defined by the hierarchy. This is like widening a class’s inheritance to accept methods from a sibling or
cousin, as well as a parent. When a class inherits from more than just its parent superclass, it is called
multiple inheritance.

You can add mixin methods to a class by using the INHERIT option on the ::CLASS directive. The class
to be inherited must be a mixin class. During class creation and multiple inheritance, subclasses inherit
both class and instance methods from their superclasses.

A mixin’s first non-mixin superclass is its base class. Any subclass of a mixin’s base class can directly
or indirectly inherit a mixin; other classes cannot.

43

Chapter 5. The Basics of Classes

To create a new mixin class, you use the ::CLASS directive with the MIXINCLASS option. A mixin
class is also an object class and can create its own instances.

5.7. Metaclasses
A metaclass is a class you can use to create another class. Rexx provides just one metaclass, the Class
class. A class is a factory for creating instances, and the Class class is a factory for creating factories.
Whenever you create a new factory, or class, the new class is an instance of Class. The instance methods
of Class provide the operations needed to run the new factories. These instance methods are inherited by
the new factory as its class methods.

The classes Rexx provides do not permit changes or additions to their method definitions. As a result, all
new factories inherit these unchangeable actions from the Class class, and thus operate the same way. So
if you want to create a new class--a new factory--that behaves differently from the others, you can do
either of the following:

• Write additional class methods for the new class, using the ::METHOD directive with the CLASS
option

• Use a metaclass

If you plan to create many factories with the same operational changes, you use the metaclass.

Any metaclass you create is a subclass of the Class class. To make your own metaclass, specifyclass as
a SUBCLASS option in the ::CLASS directive:

/* Create a new metaclass */

::class <emphasis role="italic">your_metaclass</emphasis> subclass class

The instance methods ofyour_metaclassbecomes the class methods for any new class created using
your_metaclass.For example, you could create a metaclass called InstanceCounter that includes instance
methods for tracking how many instances the class creates:

/* Create a new metaclass that counts its instances */

::class InstanceCounter subclass class

::method init

...

Instead of having to add instance-counting class methods to other new classes you write, you can make
InstanceCounter their metaclass. When you create the new class, you specify InstanceCounter as a
METACLASS option in the ::CLASS directive. Creating a Point class might look like this:

/* Create a public Point class using the InstanceCounter metaclass */

::class point public metaclass InstanceCounter

::method init

...

The instance methods in your new InstanceCounter metaclass become the class methods of the Point
class, and any other classes that you create in the future using a similar directive. Here is a complete
example:

44

Chapter 5. The Basics of Classes

/* A metaclass example */

a = .point~new(1,1) /* Create point instances */

say "Created point instance" a /* a, b, and c. */

b = .point~new(2,2)

say "Created point instance" b

c = .point~new(3,3)

say "Created point instance" c

/* Ask the Point class how many */

/* instances it has created. */

say "The point class has created" .point~instances "instances."

/* Create a new metaclass that */

/* counts its instances. */

::class InstanceCounter subclass class

::method init /* Create an INIT method to */

expose instanceCount /* initialize instanceCount. */

instanceCount = 0 /* Forward INIT to superclass. */

.message~new(self, .array~of("INIT",super), "a", arg(1,"A"))~send

::method new /* Create a NEW instance method.*/

expose instanceCount /* Create a new instance. */

instanceCount = instanceCount + 1 /* Bump the count. */

/* Forward NEW to superclass. */

return .message~new(self, .array~of("NEW",super), "a", arg(1,"A"))~send

::method instances /* Create an INSTANCES method. */

expose instanceCount /* Return the instance count. */

return instanceCount

/* Create Point class using */

/* InstanceCounter metaclass. */

::class point public metaclass InstanceCounter

::method init /* Create an INIT method. */

expose xVal yVal /* Set object variables */

use arg xVal, yVal /* as passed on NEW. */

::method string /* Create a STRING method. */

expose xVal yVal /* Use object variables */

return "("xVal","yVal")" /* to return string value. */

45

Chapter 5. The Basics of Classes

46

Chapter 6. A Closer Look at Objects
This chapter covers the mechanics of using objects and methods in more detail. First, a quick refresher.

A Rexx object consists of:

• Actions coded as methods

• Characteristics, coded as variables, and their values, sometimes referred to as "state data"

Sending a message to an object causes it to perform a related action. The method whose name matches
the message performs the action. The message is the interface to the object, and with information hiding,
only methods that belong to an object can access its variables.

Objects are grouped hierarchically into classes. The class at the top of the hierarchy is the Object class.
Everything below it in the hierarchy belongs to the Object class and is therefore an object. As a result, all
classes are objects.

In a class hierarchy, classes, superclasses, and subclasses are relative to one another. Unless designated
otherwise, any class directly above a class in the hierarchy is a superclass. And any class below is a
subclass.

From a class you can create instances of the class. Instances are merely similar objects that fit the
template of the class; they belong to the class, but are not classes themselves. Instances are the most
basic, most elemental of objects.

Both the classes and their instances contain variables and methods. The methods a class provides for use
by its various instances are called instance methods. In effect, these define which messages an instance
can respond to. Instance methods are the most common methods in Rexx, and are therefore called
methods.

The methods available to the class itself are called class methods. (They are actually the instance
methods of the Class class.) They define messages that only the class--and not its instances--can respond
to. Class methods generally exist to create instances and are much less common.

Figure 6-1. Instance Methods and Class Methods

47

Chapter 6. A Closer Look at Objects

6.1. Using Objects in Rexx Clauses
The following examples with Myarray illustrate how to use new objects in Rexx clauses.

myarray=.array~new(5)

creates a new instance of the Array class, Myarray. The period precedes a class name in an expression, to
distinguish the class from other variables. The Myarray array object has five elements.

After Myarray is created, you can assign values to it. One way is with the PUT method. PUT has two
arguments, which must be enclosed in parentheses. The first argument is the string to be placed in the
element. The second is the number of the element in which to place the string. Here, the string object
Hello is associated with the third element of Myarray:

myarray~put("Hello",3)

Rexx dynamically adjusts the size of the array to accommodate the new element.

One way to retrieve values from an array object is by sending it an AT message. In the next example, the
SAY instruction displays the third element of Myarray:

say myarray~at(3)

Results:

Hello

The SAY instruction expects the string object as input, which is what AT returns. If you put a nonstring
object in the SAY instruction, SAY sends a STRING message to the object. The STRING method for
Rexx’s built-in objects returns a human-readable string representation for the object. In this example, the
STRING method for Myarray returns the stringan array:

say myarray /* SAY sends STRING message to Myarray */

Results:

an array

Whenever a method returns a string, you can use it within expressions that require a string. Here, the
element of the array that AT returns is a string, so you can put an expression containing the AT method
inside a string function like COPIES():

say copies(myarray~at(3),4)

Results:

HelloHelloHelloHello

This example gets the same result using only methods:

say myarray~at(3)~copies(4)

Notice that the expression is evaluated from left to right. You can also use parentheses to enforce an
order of evaluation.

48

Chapter 6. A Closer Look at Objects

Almost all messages are sent using the twiddle, but there are exceptions. The exceptions are to improve
the reliability of the language. The following example uses the []= (left-bracket right-bracket equal-sign)
and [] methods to set and retrieve array elements:

myarray[4]="the fourth element"

say myarray[4]

Although the previous instructions look like an ordinary array assignment and array reference, they are
actually messages to the Myarray object. You can prove this by executing these equivalent instructions,
which use the twiddle to send the messages:

myarray~"[]="("a new test",4)

say myarray~"[]"(4)

Similarly, expression operators (such as +, -, /, and *) are actually methods, but you do not have to use
the twiddle to send them:

say 2+3 /* Displays 5 */

say 2~"+"(3) /* Displays 5 */

In the second SAY instruction, quotes are needed around the + message because it is a character not
allowed in a Rexx symbol.

6.2. Common Methods
When running your program, three methods that Rexx looks for, and runs automatically when
appropriate, are INIT, UNINIT, and STRING.

6.2.1. Initializing Instances Using INIT
Object classes can create instances. When these instances require initialization, you’ll want to define an
INIT method to set a particular starting value or initiate some startup processing. Rexx looks for an INIT
method whenever a new object is created and runs it.

The purpose of initialization is to ensure that the variable is set correctly before using it in an operation.
If an INIT method is defined, Rexx runs it after creating the instance. Any initialization arguments
specified in the NEW or ENHANCED message are passed to the INIT method, which can use them to
set the initial state of object variables.

If an instance has more than one INIT method (for example, INIT is defined in several classes), each
INIT method must forward the INIT message up the hierarchy and run the topmost version of INIT, to
properly initialize the instance. An example in the next section demonstrates the use of INIT.

6.2.2. Returning String Data Using STRING
The STRING method is a useful way to access object data and return it in string form for use by your
program. When a SAY instruction is processed in Rexx, Rexx automatically sends a STRING message
to the object specified in the expression. Rexx uses the STRING method of the Object class and returns a

49

Chapter 6. A Closer Look at Objects

human-readable string representation for the object. For example, if you instruct Rexx tosay a, anda is
an array object, Rexx returns an array. You can take advantage of this automatic use of STRING by
overriding Rexx’s STRING method with your own, and extract the object data itself--in this case, the
actual array data.

The following programs demonstrate STRING and INIT. In the first program, the Part class is created,
and along with it, the two methods under discussion, STRING and INIT:

/* PARTDEF.CMD - Class and method definition file */

/* Define the Part class as a public class */

::class part public

/* Define the INIT method to initialize object variables */

::method init

expose name description number

use arg name, description, number

/* Define the STRING method to return a string with the part name */

::method string

expose name

return "Part name:" name

In the ::CLASS directive, the keyword PUBLIC indicates that the class can be shared with other
programs. The two ::METHOD directives define INIT and STRING. Whenever Rexx creates a new
instance of a class, it calls the INIT method for the class. The sample INIT method uses an EXPOSE
instruction to make the name, description, and number variables available to other methods. These
exposed variables are object variables, and are associated with a particular instance of a class:

50

Chapter 6. A Closer Look at Objects

Figure 6-2. Instances in the Part Class

INIT expects to be passed three arguments. The USE ARG instruction assigns these three arguments to
the name, description, and number variables, respectively. Because those variables are exposed, the
values are available to other methods.

The STRING method returns the stringPart name:, followed by the name of a part. The STRING
method does not expect any arguments. It uses the EXPOSE instruction to tap the object variables. The
RETURN instruction returns the result string.

The following example shows how to use the Part class:

/* USEPART.CMD - use the Part class */

myparta=.part~new("Widget","A small widge",12345)

mypartb=.part~new("Framistat","Device to control frams",899)

say myparta

say mypartb

exit

::requires partdef

The USEPART program creates two parts, which are instances of the Part class. It then displays the
names of the two parts.

Rexx processes all directives before running your program. The ::REQUIRES directive indicates that the
program needs access to public class definitions that are in another program. In this case, the
::REQUIRES directive refers to the PARTDEF program, which contains the Part definition.

The assignment instructions for Mypart A and Mypart B create two objects that are instances of the Part
class. The objects are created by sending a NEW message to the Part class. The NEW message causes

51

Chapter 6. A Closer Look at Objects

the INIT method to be invoked as part of object creation. The INIT method takes the three arguments
you provide and makes them part of the object’s own exclusive set of variables, called a variable pool.
Each object has its own variable pool (name, description, and number).

The SAY instruction sends a STRING message to the object. In the first SAY instruction, the STRING
message is sent to MypartA. The STRING method accesses the Name object variable for MypartA and
returns it as part of a string. In the second SAY instruction, the STRING message is sent again, but to a
different object: MypartB. Because the STRING method is invoked for MypartB, it automatically
accesses the variables for MypartB. You do not need to pass the name of the object to the method in
order to distinguish different sets of object variables; Rexx keeps track of them for you.

Another way to define classes is by using the SUBCLASS method. You can send a SUBCLASS method
to any desired superclass to create a class.

6.2.3. Uninitializing and Deleting Instances Using UNINIT
Object classes can create instances but have no direct control over their deletion. If you assign a new
value to a variable, Rexx automatically reclaims the storage for the old value in a process called garbage
collection.

If variables of other objects no longer reference an instance, Rexx automatically reclaims that instance. If
the instance has allocated other system resources, you must release them at this time using an UNINIT
method. Rexx cannot automatically release these resources because it is unaware that the instance has
allocated them.

In the following example, the value passed totext is initialized by Rexx using INIT and deleted by Rexx
using UNINIT. This program makes visible Rexx’s automatic invocation of INIT and UNINIT by
revealing its processing on the screen using the SAY instruction:

/* UNINIT.CMD - example of UNINIT processing */

a=.scratchpad~new("Of all the things I’ve lost")

a=.scratchpad~new("I miss my mind the most")

say "Exiting program."

exit

::class scratchpad

::method init

expose text

use arg text

say "Remembering" text

::method uninit

expose text

say "Forgetting" text

return

Whether uninitialization processing is needed depends on the circumstances, for example when a
message object holds an unreported error that should be reported and cleared. If an object requires
uninitialization, define an UNINIT method to specify the processing you want.

52

Chapter 6. A Closer Look at Objects

If UNINIT is defined, Rexx runs it before reclaiming the object’s storage. If an instance has more than
one UNINIT method (for example, UNINIT is defined in several classes), each UNINIT method is
responsible for sending the UNINIT message up the hierarchy, using the SUPERCLASS overrides, to
run the topmost version of UNINIT.

6.3. Special Variables
When writing methods, you can use special variables available in Rexx. A special variable can be set
automatically during the processing of a Rexx program. Rexx supports the following variables:

RC

is set to the return code from any executed command, including those submitted with the
ADDRESS instruction. After the trapping of ERROR or FAILURE conditions, it is also set to the
command return code. When the SYNTAX condition is trapped, RC is set to the syntax error
number (1-99). RC is unchanged when any other condition is trapped.

Note: Tracing interactively does not change the value of RC.

RESULT

is set by a RETURN instruction in a subroutine that has been called, or a method that was activated
by a message instruction, if the RETURN instruction specifies an expression. If the RETURN
instruction has no expression on it, RESULT is dropped (becomes uninitialized). RESULT is also
set by an EXIT or REPLY instruction.

SELF

is set when a method is activated. Its value is the object that forms the execution context for the
method (that is, the receiver object of the activating message).

You can use SELF to:

• Run a method in an object in which a method is already running. For example, a FIND_CLUES
method is running in an object called Mystery_Novel. When FIND_CLUES finds a clue, it sends
a READ_LAST_PAGE message to Mystery_Novel:

self~read_last_page

• Pass references regarding an object to the methods of other objects. For example, a SING method
is running in object Song. The code:

Singer2~duet(self)

would give the DUET method access to the same Song.

53

Chapter 6. A Closer Look at Objects

SIGL

is set to the line number of the last instruction that caused a transfer of control to a label (that is, any
SIGNAL, CALL, internal function call, or trapped condition).

SUPER

is set when a method is activated. Its value is the class object that is the usual starting point for a
superclass method lookup for the SELF object. This is the first immediate superclass of the class
that defined the method currently running.

The special variable SUPER lets you call a method in the superclass of an object. For example, the
following Savings class has INIT methods that the Savings class, Account class, and Object class
define.

::class Account

::method INIT

expose balance

use arg balance

self~init:super /* Forwards to the Object INIT method */

::method TYPE

return "an account"

::method name attribute

::class Savings subclass Account

::method INIT

expose interest_rate

use arg balance, interest_rate

self~init:super(balance) /* Forwards to the Account INIT method */

::method type

return "a savings account"

When the INIT method of the Savings class is called, the variable SUPER is set to the Account
class object. For example:

self~init:super(balance)

This instruction calls the INIT method of the Account class rather than recursively calling the INIT
method of the Savings class. When the INIT method of the Account class is called, the variable
SUPER is assigned to the Object class. For example:

self~init:super

This instruction calls the INIT method the Object class defines.

You can alter these variables, just like any other variable, but Rexx continues to set RC, RESULT, and
SIGL automatically when appropriate. EXPOSE, PROCEDURE, USE, and DROP instructions affect
these variables in their usual way.

Rexx also supplies functions that indirectly affect the execution of a program. An example is the name
that the program was called by and the source of the program (which are available using the PARSE

54

Chapter 6. A Closer Look at Objects

SOURCE instruction). In addition, PARSE VERSION makes available the language version and date of
Rexx implementation that is running. The built-in functions ADDRESS, DIGITS, FUZZ, FORM, and
TRACE return other settings that affect the execution of a program.

6.4. Public, Local, and Built-In Environment Objects
In addition to the special variables, Rexx provides a unique set of objects, called environment objects.
Environment objects are members of the Object class only. Rexx makes the following environment
objects available:

6.4.1. The Public Environment Object (.environment)
The Environment object is a directory of public objects that are always accessible throughout the whole
process. To place something in the Environment directory, you use the form:

.environment~your.object = value

Include a period (.) in any object name you use, to avoid conflicts with current or future Rexx entries to
the Environment directory. To retrieve your object, you use the form:

say .environment~your.object

The scope of.environment is the current process.

You use an environment symbol to access the entries of this directory. An environment symbol starts
with a period and has at least one other character, which must not be a digit. You have seen environment
symbols earlier; for example in:

asav = .savings~new

.Savings is an environment symbol, and refers to the Savings class. The classes you create can be
referenced with an environment symbol. There is an environment symbol for each Rexx-defined class, as
well as for each of the unique objects this section describes, such as the NIL object.

6.4.1.1. The NIL Object (.nil)

The NIL object is a special environment object that does not contain any data. It represents the absence
of an object, the way a null string represents a string with no characters. Its only methods are those of the
Object class. You use the NIL object (rather than the null string) to test for the absence of data in an array
entry:

if board[row,column] = .nil

then ...

All the environment objects Rexx provides are single symbols. Use compound symbols when you create
your own, to avoid conflicts with future Rexx-defined entries.

55

Chapter 6. A Closer Look at Objects

6.4.2. The Local Environment Object (.local)
The Local environment object is a directory of process-specific objects that are always accessible. To
place something in the Local environment directory, you use the form:

.local~your.object = value

Be sure to include a period (.) in any object name you use, to avoid conflicts with current or future Rexx
entries to the Local directory. To retrieve your object, you use the form:

say .local~your.object

The scope of.local is the current process.

You access objects in the Local environment object like in the Environment object. Rexx provides the
following objects in the Local environment:

.error

is the Error object (the default error stream) to which Rexx writes error messages and trace output
to.

.input

is the Input object (the default input stream), which is the source for the PARSE LINEIN
instruction, the LINEIN method of the Stream class, and (if you do not specify a stream name) the
LINEIN built-in function. It is also the source of the PULL and PARSE PULL instructions if the
external data queue is empty.

.output

is the Output object (the default output stream), which is the destination of output from the SAY
instruction, the LINEOUT method (.OUTPUT~LINEOUT), and (if you do not specify a stream
name) the LINEOUT built-in function. You can replace this object in the environment to direct such
output elsewhere, for example to a transcript window.

6.4.3. Built-In Environment Objects
Rexx provides environment objects that all programs can use. To access these built-in objects, you use
the special environment symbols whose first character is a period (.).

.methods

The .methods environment symbol identifies a directory of methods that ::METHOD directives in
the currently running program define. The directory indexes are the method names. The directory
values are the method objects. Only methods that are not preceded by a ::CLASS directive are in the
.methods directory. If there are no such methods, the .methods symbol has the default value of
".METHODS". Here is an example:

use arg class, methname

class~define(methname,.methods["a"])

::method a

use arg text

56

Chapter 6. A Closer Look at Objects

say text

.rs

.rs is set to the return status from any executed command, including those submitted with the
ADDRESS instruction. The .rs environment symbol has a value of -1 when a command returns a
FAILURE condition, a value of 1 when a command returns an ERROR condition, and a value of 0
when a command indicates successful completion. The value of .rs is also available after trapping
the ERROR or FAILURE condition.

Note: Tracing interactively does not change the value of .rs. The initial value of .rs is 0.

6.4.4. The Default Search Order for Environment Objects
When you use an environment symbol, Rexx performs a series of searches to see if the environment
symbol has an assigned value. The search locations and their ordering are:

1. The directory of classes declared on ::CLASS directives within the current program file.

2. The directory of PUBLIC classes declared on ::CLASS directives of other files included with a
::REQUIRES directive.

3. The program local environment directory, which includes process-specific objects such as the
.INPUT and .OUTPUT objects. You can directly access the local environment directory by using the
.Local environment symbol.

4. The global environment directory, which includes all "permanent" Rexx objects such as the
Rexx-supplied classes (for example, .ARRAY) and constants such as .TRUE and .FALSE. You can
directly access the global environment by using the .environment symbol or using the VALUE
built-in function with a null string for theselectorargument.

5. Rexx defined symbols. Other simple environment symbols are reserved for use by Rexx for built-in
objects. The currently defined built-in objects are .RS and .METHODS.

If an entry is not found for an environment symbol, the default character string value is used.

Note: You can place entries in both the .local and .environment directories for programs to use. To
avoid conflicts with future Rexx-defined entries, it is recommended that entries you place in either of
these directories include at least one period in the entry name.

Example:

/* establish a global settings directory */

.local~setentry("MyProgram.settings", .directory~new)

57

Chapter 6. A Closer Look at Objects

6.5. Determining the Scope of Methods and Variables
Methods interact with variables and their associated data. But a method cannot interact with any variable.
Certain methods and variables are designed to work together. A method designates the variables it wants
to work with by exposing them with an EXPOSE instruction. The exposed methods are called object
variables. Exposing variables confines them to an object; in object-oriented terms, they are encapsulated.
This protects the object variables’ data from being changed by "unauthorized" methods belonging to
other objects.

6.5.1. Objects with a Class Scope
Encapsulation usually takes place at the class level. The class is designed as a template of methods and
variables. The instances themselves retain only the values of their variables.

Within the hierarchy, the class structure ensures the integrity of a class’s variables, controlling the
methods allowed to operate on them. The class structure also provides for easy updating of the method
code. If a method requires a change, you only have to change it once, at the class level. The change then
is acquired by all the instances sharing the method.

Associated methods and variables have a certain scope, which is the class to which they belong:

Figure 6-3. Scope of the Number Class

Each class in a class hierarchy has a scope different from any other class. This is what allows a variable
in a subclass to have the same name as a variable in a superclass, even though the methods that use the
variables may be completely different.

58

Chapter 6. A Closer Look at Objects

6.5.2. Objects with Their Own Unique Scope
The methods and variables used by instances in a class are usually found at the class level. But
sometimes an instance differs in some respect from the others in its class. It might perform an additional
action or require some unique handling. In this case one or more methods and related variables can be
added directly to the instance. These additional methods and variables form a separate scope,
independent of the class scopes found throughout the rest of the hierarchy.

Methods can be added directly to an instance’s collection of object methods using SETMETHOD, a
method of the Object class. All subclasses of the Object class inherit SETMETHOD. Alternately, the
Class class provides an ENHANCED method that lets you create new instances of a class, whose object
methods are the instance methods of its class, but enhanced with the additional collection methods.

6.6. More about Methods
A method name can be any character string. When an object receives a message, Rexx searches for a
method whose name matches the message name.

You must surround a method name with quotation marks when it is the same as an operator. The
following example illustrates how to do this correctly. It creates a new class (Cost), defines a new method
(%), creates an instance of the Cost class (Mycost), and sends a% message to Mycost:

mycost = Cost~new /* Creates new instance mycost.*/

mycost~"%" /* Sends % message to mycost. */

::class Cost subclass "Retail" /* Creates Cost, a sub- */

/* class of "Retail" class. */

::method "%" /* Creates % method. */

expose p /* Produces: Enter a price. */

say "Enter a price" /* If the user specifies a */

pull p /* price of 100, */

say p*1.07 /* produces: 107 */

return 0

6.6.1. The Default Search Order for Selecting a Method
When a message is sent to an object, Rexx looks for a method whose name matches the message string.
If the message is ADD, for example, Rexx looks for a method named ADD. Because, in the class
hierarchy, there may be more than one method with the same name, Rexx begins its search at the object
specified in the message. If the sought method is not found there, the search continues up the hierarchy.
Rexx searches in the following order:

1. A method the object defines itself (with SETMETHOD or ENHANCED).

2. A method the object’s class defines.

59

Chapter 6. A Closer Look at Objects

An object acquires the methods of its parent class; that is, the class for which the object was created.
If the class subsequently receives new methods, objects predating the new methods do not acquire
them.

3. A method an object’s superclasses define.

As with the object’s class, only methods that existed in the superclass when the object was created
are valid. Rexx searches the superclass method definitions in the order that INHERIT messages were
sent to an object’s class.

If Rexx does not find a match for the message name, Rexx checks the object for method name
UNKNOWN. If it exists, Rexx calls the UNKNOWN method, and returns whatever the UNKNOWN
method returns. For more information on the UNKNOWN method, seeDefining an UNKNOWN
Method. If the object does not have an UNKNOWN method, Rexx raises a NOMETHOD condition. Any
trapped information can then be inspected using Rexx’s CONDITION built-in function.

Rexx searches up the hierarchy so that methods existing in higher levels can be supplemented or
overridden by methods existing in lower levels.

Figure 6-4. Searching the Hierarchy for a Method

For example, suppose you wrote a program that allows users to look up other users’ phone numbers.
Your program includes a class called Phone_Directory, and all its instances are users’ names with phone
numbers. You have included a method in Phone_Directory called NOTIFY that reports some data to a
file whenever someone looks up a number. All instances of Phone_Directory use the NOTIFY method.

Now you decide you want NOTIFY, in addition to its normal handling, to personally inform you
whenever anyone looks up your number. To accommodate this special case for your name only, you
create your own NOTIFY method that adds the new task and replicates the file-handling task. You save
the new method as part of your own name instance, retaining the same name, NOTIFY.

60

Chapter 6. A Closer Look at Objects

Now, when a NOTIFY message is sent to your name instance, the new version of NOTIFY is found first.
Rexx does not look further up the class hierarchy. The instance-level version overrides the version at the
class level. This technique of overriding lets you change a method used by one instance without
disturbing the common method used by all the other instances. It is very powerful for that reason.

6.6.2. Changing the Search Order for Methods
When composing a message, you can change the default search order for methods by doing both of the
following:

1. Making the receiver object the sender object. You usually do this by specifying the special variable
SELF. SELF holds the value of the object in which a method is running. You can use SELF to run
another method in an object where a method is already running or pass references about an object to
the methods of other objects.

2. Specifying a colon and a class symbol after the message name. The class symbol identifies the class
object to use as the starting point for the search. This class object must be:

• A direct superclass of the class that defines the active method

• The object’s own class, if you used SETMETHOD to define the active method

The class symbol is usually the special variable SUPER, but it can be any environment symbol or
variable name whose value is a valid class.

In A Sample Program Using Directives, an Account subclass of the Object superclass is created. It
defines a TYPE method for Account, and creates the Savings subclass of Account. The example defines
a TYPE method for the Savings subclass, as follows:

::class Savings subclass Account

::method "TYPE"

return "a savings account"

To change the search order so Rexx searches for TYPE in the Account rather than Savings subclass,
enter this instead:

::method "TYPE"

return self~type:super "(savings)"

When you create anasav instance of the Savings subclass and send a TYPE message toasav:

say asav~type

Rexx displays:

an account

rather than:

a savings account

61

Chapter 6. A Closer Look at Objects

because Rexx searches for TYPE in the Account class first.

6.6.3. Public versus Private Methods
A method can be public or private. Any object can send a message that runs a public method. Only a
message an object sends to itself, using the special variable SELF as the message receiver, can run a
private method. Private methods include methods at different scopes within the same object. This allows
superclasses to make methods available to their subclasses while hiding those methods from other
objects. A private method is like an internal subroutine. It shields the internal information of an object.

6.6.4. Defining an UNKNOWN Method
When an object that receives a message has no matching message name, Rexx checks if the object has a
method named UNKNOWN. If it does, Rexx calls UNKNOWN, passing two arguments. The first is the
name of the method that was not located. The second is an array containing the arguments passed with
the original message.

To define an UNKNOWN message, you specify:

UNKNOWN(message_name,message_args)

6.7. Concurrency
In object-oriented programming, as in the real world, objects interact with each other. Assume, for
example, throngs of people interacting at rush hour in the business district of a big city. A program that
aspires to simulate the real world would have to enable many objects to interact at any given time. That
could mean thousands of objects sending messages to each other, thousands of methods running at once.
In Rexx, this simultaneous activity is called concurrency. To be precise, the concurrency is
object-oriented concurrency because it involves objects, as opposed to, for example, processes or threads.

Rexx objects are inherently concurrent, and this concurrency takes the following forms:

• Inter-object concurrency, where several objects are active--exchanging messages, synchronizing,
running their methods--at the same time

• Intra-object concurrency, where several methods are able to run on the same object at the same time

The default settings in Rexx allow full inter-object concurrency but limited intra-object concurrency.
Some situations, however, call for full intra-object concurrency.

6.7.1. Inter-Object Concurrency
Rexx provides for inter-object concurrency, where several objects in a program can run at the same time,
in the following ways:

62

Chapter 6. A Closer Look at Objects

• By early reply, by means of the REPLY instruction

• Using message objects

Early reply allows the object that sends a message to continue processing after the message is sent.
Meanwhile, the receiving object runs the method corresponding to the message. This method contains
the REPLY instruction, which returns any results to the sender, interrupting the sender just long enough
to reply. The sender and receiver continue operating simultaneously.

Alternatively, an independent message object can be created and sent to a receiver. One difference in this
approach is that any reply returned does not interrupt the sender. The reply waits until the sender asks for
it. In addition, message objects can notify the sender about the completion of the method it sent, and
even specify synchronous or asynchronous method activation.

The chains of execution represented by the sender and receiver methods are called activities. An activity
is a thread of execution that can run methods concurrently with methods on other activities. In other
words, activitiescan run at the same time.

An activity contains a stack of invocations that represent the Rexx programs running on the activity. An
invocation can be:

• A main program invocation

• An internal function or subroutine call

• An external function or subroutine call

• An INTERPRET instruction

• A message invocation

An invocation is pushed onto an activity when an executable unit is invoked. It is removed (or popped)
when execution completes.

6.7.1.1. Object Variable Pools

Every object has its own set of variables, called its object variable pool. These are variables associated
solely with the object. When an object’s method runs, it first identifies the object variables it intends to
work with. Technically, it "exposes" these variables, using the Rexx instruction EXPOSE. Exposing the
object’s variables distinguishes them from variables used by the method itself, which are not exposed.
Every method an object owns--that is, all the instance methods in the object’s class--can expose variables
from the object’s variable pool.

Therefore, an object variable pool includes variables:

• Exposed by methods in the object’s class. This set of variables is called a subpool.

• Inherited from classes elsewhere in the hierarchy (in the form of additional subpools).

All of a class’s variables, together with the methods that expose them, are called a class scope. Rexx
exploits this class scope to achieve concurrency. To explain, the object variable pool is a collection of
variable subpools. Each subpool is at a different scope in the object’s inheritance chain. As long as the
methods running on the object are at different scopes, they can run simultaneously.

Scopes, like objects, hide and protect data from outside manipulation. Methods of the same scope share
the variable subpools of that scope. The scope shields the variable subpools from methods operating at

63

Chapter 6. A Closer Look at Objects

other scopes. Thus, you can reuse variable names from class to class, without the variables being
accessed and possibly corrupted by a method outside their own class. So class scopes divide an object’s
variable pool into subpools that can operate independently of one another. Several methods can use the
same variable pool concurrently, as long as they confine themselves to variables in their own subpools.

6.7.1.2. Prioritizing Access to Variables

Even with class scopes and subpools, a variable is vulnerable if several methods within the scope try to
access it at the same time. To handle this, Rexx ensures that when a particular method is activated and
exposes variables from its subpool, that method has exclusive use of the subpool until processing is
complete. Until then, Rexx delays the execution of any other method that needs the same subpool.

Thus if different activities send several messages to the same object, Rexx forces the methods to run
sequentially within a single scope. This "first-in, first-out" processing of methods in a scope prevents
them from simultaneously accessing one variable, and possibly corrupting the data.

6.7.1.3. Sending Messages within an Activity

Rexx makes one exception to sequential processing--when a method sends a message to itself. Assume
that method M1 has exclusive access to object O, and then tries to run a second, internal method M2,
also belonging to O. Internal method M2 would try to run, but Rexx would delay it until the original
method M1 finished. Yet M1 would be unable to proceed until M2 ran. The two methods would become
deadlocked. In actual practice Rexx intervenes by treating internal method M2 like a subroutine call. In
this case, Rexx runs method M2 immediately, then continues processing method M1.

The mechanism controlling this is the activity. Typically, whenever a message is invoked on an object,
the activity acquires exclusive access by locking the object’s scope. Any other activity sending a message
to the object whose scope is locked must wait until the first activity releases the lock. The situation is
different, however, if the messages originate from the same activity. When an invocation running on an
activity sends another message to the same object, the method is allowed to run because the activity has
already acquired the lock for the scope. Thus, Rexx permits nested, nonconcurrent method invocations on
a single activity. No deadlocks occur because Rexx treats these additional messages as subroutine calls.

6.7.2. Intra-Object Concurrency
Several methods can access the same object at the same time only if they are operating at different
scopes. That is because they are working with separate variable subpools. If two methods in the same
scope try to run on the object, Rexx by default processes them on a "first-in, first-out" basis, while
treating internal methods as subroutines. You can, however, achieve full intra-object concurrency. Rexx
offers several mechanisms for this, including:

• The SETUNGUARDED method of the Method class and the UNGUARDED option of the
::METHOD directive, which provide unconditional intra-object concurrency.

• The GUARD OFF and GUARD ON instructions, which permit switching between intra-object and
default concurrency.

64

Chapter 6. A Closer Look at Objects

When intra-object concurrency at the scope level is needed, you must specifically employ these
mechanisms (see the following section). Otherwise, Rexx sequentially processes the methods when they
are competing for the same object variables.

6.7.2.1. Activating Methods

By default, Rexx assumes that an active method requires exclusive use of its object variable pool. If
another method attempts access at that time, it is locked out until the first method is finished with the
variable pool. This default intra-object concurrency maintains the integrity of the variable pool and
prevents unexpected results. Rexx manages queues for incoming requests that result in messages being
sent to the same object.

Some methods can run concurrently without affecting variable pool integrity or yielding unexpected
results. When a method does not need exclusive use of its object variable pool, you can use the
SETUNGUARDED method or the UNGUARDED option of the ::METHOD directive to provide
unconditional intra-object concurrency. These mechanisms control the locking of an object’s scope when
a method is invoked.

Many methods cannot use SETUNGUARDED and UNGUARDED because they sometimes require
exclusive use of their variable pool. At other times, they must perform some action that involves the
concurrent use of the same pool by a method on another activity. In this case, you can use the GUARD
built-in function. When the method reaches the point in its processing where it requires concurrent use of
the variable pool, this function calls the GUARD OFF function. GUARD OFF lets another method that
runs on a different activity become active on the same object. If the method needs to regain exclusive
use, it calls GUARD ON.

For more flexibility when activating methods, you can use GUARD ON/OFF with the "WHEN
expression" option. Add this instruction to the method code at the point where exclusive use of the
variable pool becomes conditional. When processing reaches this point, Rexx evaluatesexpressionto
determine if it is true or false.

For example, if you specify "GUARD OFF WHENexpression," the active method keeps running until
expressionbecomes true. To become true, another method must assign or drop an object variable that is
named inexpression.Whenever an object variable changes, Rexx reevaluatesexpression.If expression
becomes true, GUARD is turned off, exclusive use of the variable pool is released, and other methods
needing exclusive use can begin running. Ifexpressionbecomes false again, GUARD is turned on and
the active method regains exclusive use.

Note: If expression cannot be met, GUARD ON WHEN puts the program in a continuous wait
condition. This can occur in particular when several activities run concurrently. A second activity can
make expression invalid before GUARD ON WHEN can use it.

65

Chapter 6. A Closer Look at Objects

66

Chapter 7. Commands
From a Rexx program you can pass commands to Windows and Unix/Linux shells or to applications
designed to work with Rexx. When used to run operating system commands, Rexx becomes a powerful
substitute for the Windows Batch Facility or the Unix shell. You can use variables, control structures,
mathematics, and parsing to create procedures that would be impossible to implement with the Windows
Batch Facility.

Applications that are designed to work with Rexx are often referred to as scriptable applications. To
work with Rexx, a scriptable application registers an environment with Rexx. An environment serves as a
kind of workspace shared between Rexx and the application. Environments accept application
subcommands issued from Rexx programs.

For example, many editors provide a command prompt or dialog box from which you can issue
subcommands to set margins or add lines. If the editor is scriptable from Rexx, you can issue editor
subcommands from a Rexx program. These Rexx programs are referred to as macros.

When an application runs a Rexx macro, Rexx directs commands to the application’s environment. If
you issue a subcommand that the application does not recognize, it might pass the command to
Windows, depending on the application.

To let you specify which environment processes a command, Rexx includes an ADDRESS instruction.
Starting your Rexx programs from the Windows command line makes Windows the default environment
for Rexx commands.

7.1. How to Issue Commands
Rexx makes it easy to issue commands. The basic rule is that whatever Rexx cannot process it passes to
the default environment. You can:

• Allow Rexx to evaluate part or all of a clause as an expression. Rexx automatically passes the resulting
string to the default environment.

• Enclose the entire clause in quotation marks. This makes it a literal string for Rexx to pass to the
default environment.

• Send a command explicitly to Windows or Unix/Linux by using the ADDRESS instruction.

Rexx processes your program one clause at a time. It examines each clause to determine if it is:

• A directive, such as ::CLASS or ::METHOD

• A message instruction, such as:

.array~new

• A keyword instruction, such as:

say "Type total number"

or

pull input

67

Chapter 7. Commands

• A variable assignment (any valid symbol followed by an equal sign), such as:

price = cost * 1.2

• A label for calling other routines

• A null (empty) clause

If the clause is none of the above, Rexx evaluates the entire clause as an expression and passes the
resulting string to Windows.

If the string is a valid operating system command, the OS processes it as though you had typed the string
at the command prompt and pressed the Enter key.

The following example shows a Rexx clause that uses the DIR command to display a list of files in the
current directory.

/* display current directory */

say "DIR command using Rexx"

dir

The clausedir is not a Rexx instruction or a label, so Rexx evaluates it and passes the resulting string to
Windows. Windows recognizes the string DIR as one of its commands and processes it.

Letting Rexx evaluate the command as an expression might cause problems, however. Try adding a path
to the DIR command in the above program (such as,dir c:\config.sys). The Windows command in
this case is an incorrect Rexx expression. The program ends with an error.

A safer way to issue commands is by enclosing the command in quotes, which makes the command a
literal string. Rexx does not evaluate the contents of strings. Because the string is not a Rexx instruction
or label, Rexx passes the string to Windows. Here is an example using the PATH command:

/* display current path */

say "PATH command using Rexx"

"path"

The following example, DP.CMD, shows a program using the DIR and PATH commands. The PAUSE
command is added to wait for the user to press a key before issuing the next instruction or command.
Borders are added too.

/* DP.CMD -- Issue DIR and PATH commands to Windows */

say "="~copies(40) /* display line of equal */

/* signs (=) for a border */

"dir" /* display listing of */

/* the current directory */

"pause" /* pauses processing and */

/* tells user to "Press */

/* any key to continue." */

say "="~copies(40) /* display line of = */

"path" /* display the current */

68

Chapter 7. Commands

/* PATH setting */

When you specify the following:

[C:\]rexx dp

a possible output would be:

==

The volume label in drive C is WIN.

Directory of C:\EXAMPLES

. <DIR> 10-16-94 12:43p

.. <DIR> 10-16-94 12:43p

EX4_1 CMD nnnn 10-16-94 1:08p

DEMO TXT 117 10-16-94 1:10p

4 File(s) 12163072 bytes free

Press any key when ready . . .

==

PATH=C:\WINDOWS

[C:\]

Note: Whenever you execute a host command addressed to the Windows or Unix/Linux command
shell, that is, an expression that is passed to the system by address CMD as described above, a new
process is created in which the system command handler is executed. When the host command
returns, any changes to the process environment, such as changing the directory, are not passed
back to the process running the Rexx program. To avoid this potential problem, use a different
function such as directory() instead of the command CD

7.2. Command Echo
When your Rexx program issues a Windows or Unix/Linux command, Rexx passes the command to the
Windows or the Unix/Linux command handler for processing. This processing does not include
displaying, or echoing, the command on the screen.

Therefore using the Windows ECHO OFF command in your Rexx program or putting an at sign (@) in
front of the command has no effect.

7.3. Rexx and Batch Files
You can use a Rexx program whenever you now use Windows batch files or Unix/Linux shell scripts.
The following example shows a Windows batch file that processes user input to display a help message:

@echo off

if %1.==. goto msg

69

Chapter 7. Commands

if %1 == on goto yes

if %1 == off goto no

if %1 == ON goto yes

if %1 == OFF goto no

if %1 == On goto yes

if %1 == oN goto yes

if %1 == OFf goto no

if %1 == OfF goto no

if %1 == Off goto no

if %1 == oFF goto no

if %1 == oFf goto no

if %1 == ofF goto no

helpmsg %1

goto exit

:msg

helpmsg

goto exit

:yes

prompt $i[$p]

goto exit

:no

cls

prompt

:exit

Here is the equivalent program in Rexx:

/* HELP.CMD -- Get help for a system message */

arg action .

select

when action="" then "helpmsg"

when action="ON" then "prompt $i[$p]"

when action="OFF" then do

"cls"

"prompt"

end

otherwise "helpmsg" action

end

exit

7.4. Issuing a Command to Call a .CMD File
If you issue a command to have the system run one of its built-in commands or other programs, you can
call it by name. However, to run another .CMD program from your Rexx program, you must call it using
a CALL instruction instead of its name. You can use the Rexx CALL instruction or the Windows CALL
command.

The Rexx CALL instruction calls other Rexx programs. To call a Rexx program named MYSUB1, your
CALL instruction could look like this:

call mysub1

70

Chapter 7. Commands

Rexx recognizes the CALL instruction, handles the call, and processes MYSUB1 as a Rexx program.

The Rexx CALL instruction does not call a non-Rexx .CMD file. Instead, you would use the Windows
CALL command. To call a non-Rexx .CMD program named MYSUB2, you could write the CALL
instruction like this:

"call mysub2"

Rexx evaluates the expression and passes it to the Windows command handler for processing. The
command handler recognizes the CALL command and processes MYSUB2 as a .CMD program.

The quotation marks aroundcall mysub2 indicate that this is the Windows CALL command instead of a
Rexx CALL instruction.

You can also execute another Rexx program within a new process by invoking the interpreter followed
by the Rexx program name like this:

"rexx mysub2"

However, remember that running the interpreter concurrently requires additional startup time and system
resources.

7.5. Using Variables to Build Commands
You can use variables to build commands. The SHOFIL.CMD program is an example. SHOFIL types a
file that the user specifies. It prompts the user to enter a file name and then builds a variable containing
the TYPE command and the input file name.

To have Rexx issue the command to the operating system, put the variable containing the command
string on a line by itself. Rexx evaluates the variable and passes the resultant string to Windows:

/* SHOFIL.CMD - build command with variables */

/* prompt the user for a file name */

say "Type a file name:"

/* assign the response to variable FILENAME */

pull filename

/* build a command string by concatenation */

commandstr = "TYPE" filename

/* Assuming the user typed "demo.txt," */

/* the variable COMMANDSTR contains */

/* the string "TYPE DEMO.TXT" and so... */

commandstr /* ...Rexx passes the */

/* string on to Windows */

Rexx displays the following on the screen when you run the program:

[C:\]rexx shofil

Type a file name:

71

Chapter 7. Commands

demo.txt

This is a sample text file. Its sole

purpose is to demonstrate how

commands can be issued from Rexx

programs.

[C:\]

7.6. Using Quotation Marks
The rules for forming a command from an expression are the same as those for forming expressions. Be
careful with symbols that are used in Rexx and Windows programs. The DIRREX.CMD program below
shows how Rexx evaluates a command when the command name and a variable name are the same:

/* DIRREX.CMD - assign a value to the symbol DIR */

say "DIR command using Rexx"

dir = "echo This is not a directory."

/* pass the evaluated variable to Windows */

dir

Because dir is a variable that contains a string, the string is passed to the system. The DIR command is
not executed. Here are the results:

[C:\]rexx dirrex

DIR command using Rexx:

This is not a directory.

[C:\]

Rexx evaluates a literal string--a string enclosed in matching quotation marks--exactly as it is. To ensure
that a symbol in a command is not evaluated as a variable, enclose it in matching quotation marks as
follows:

/* assign a value to the symbol DIR */

say "DIR command using Rexx"

dir = "echo This is another string now."

/* pass the literal string "dir" to Windows */

"dir"

Rexx displays a directory listing.

The best way to ensure that Rexx passes a string to the system as a command is to enclose the entire
clause in quotation marks. This is especially important when you use symbols that Rexx uses as
operators.

If you want to use a variable in the command string, leave the variable outside the quotation marks. For
example:

extension = "BAK"

72

Chapter 7. Commands

"delete *."||extension

option = "/w"

"dir"||option

7.7. ADDRESS Instruction
To send a command to a specific environment, use this format of the ADDRESS instruction:

ADDRESS environment expression

Forenvironmentspecify the destination of the command. To address the Windows environment, use the
symbol CMD. Forexpression, specify an expression that results in a string that Rexx passes to the
environment. Here are some examples:

address CMD "dir" /* pass the literal string */

/* "dir" to Windows */

address "bash" "ls" /* pass the literal string */

/* "ls" to the Linux bash shell */

cmdstr = "dir *.txt" /* assign a string */

/* to a variable */

address CMD cmdstr /* Rexx passes the string */

/* "dir *.txt" to Windows */

address edit "rain" /* Rexx passes the "rain" */

/* command to a fictitious */

/* environment named edit */

Notice that the ADDRESS instruction lets a single Rexx program issue commands to two or more
environments.

7.8. Using Return Codes from Commands
With each command it processes, Windows and Unix/Linux command shells produce a number called a
return code. When a Rexx program is running, this return code is automatically assigned to a special
built-in Rexx variable named RC.

If the command was processed without problems, the return code is almost always 0. If something goes
wrong, the return code issued is a nonzero number. The number depends on the command itself and the
error encountered.

This example shows how to display a return code:

/* GETRC.CMD report */

"TYPE nosuch.fil"

say "the return code is" RC

73

Chapter 7. Commands

The special variable RC can be used in expressions like any other variable. In the next example, an error
message is displayed when the TYPE command returns a nonzero value in RC:

/* Simple if/then error handler */

say "Type a file name:"

pull filename

"TYPE" filename

if RC \= 0

then say "Could not find" filename

This program tells you only that the system could not find a nonexistent file.

A system error does not stop a Rexx program. Without some provision to stop the program, in this case a
trap, Rexx continues running. You might have to press the Ctrl+Break key combination to stop
processing. Rexx includes the following instructions for trapping and controlling system errors:

• CALL ON ERROR

• CALL ON FAILURE

• SIGNAL ON ERROR

• SIGNAL ON FAILURE

7.9. Subcommand Processing
Rexx programs can issue commands or subcommands to programs other than Windows. To determine
what subcommands you can issue, refer to the documentation for the application.

To make your own applications scriptable from Rexx, seeRexx Application Programming Interfaces.

7.10. Trapping Command Errors
The most efficient way to detect errors from commands is by creating condition traps, using the SIGNAL
ON and CALL ON instructions, with either the ERROR or the FAILURE condition. When used in a
program, these instructions enable, or switch on, a detector in Rexx that tests the result of every
command. Then, if a command signals an error, Rexx stops usual program processing, searches the
program for the appropriate label (ERROR:, or FAILURE:, or a label that you created), and resumes
processing there.

SIGNAL ON and CALL ON also tell Rexx to store the line number (in the Rexx program) of the
command instruction that triggered the condition. Rexx assigns that line number to the special variable
SIGL. Your program can get more information about what caused the command error through the
built-in function CONDITION.

Using the SIGNAL and CALL instructions to handle errors has several advantages; namely, that
programs:

• Are easier to read because you can confine error-trapping to a single, common routine

74

Chapter 7. Commands

• Are more flexible because they can respond to errors by clause (SIGL), by return code (RC), or by
other information (CONDITION method or built-in function)

• Can catch problems and react to them before the environment issues an error message

• Are easier to correct because you can turn the traps on and off (SIGNAL OFF and CALL OFF)

For other conditions that can be detected using SIGNAL ON and CALL ON, see theOpen Object Rexx:
Reference.

7.10.1. Instructions and Conditions
The instructions to set a trap for errors are SIGNAL and CALL. Example formats are:

SIGNAL ON condition NAME trapname

CALL ON condition NAME trapname

The SIGNAL ON instruction initiates an exit subroutine that ends the program. The CALL ON
instruction initiates a subroutine that returns processing to the clause immediately following the CALL
ON instruction. You use CALL ON to recover from a command error or failure.

The command conditions that can be trapped are:

ERROR

Detects any nonzero error code the default environment issues as the result of a Rexx command.

FAILURE

Detects a severe error, preventing the system from processing the command.

A failure, in this sense, is a particular category of error. If you use SIGNAL ON or CALL ON to set a
trap only for ERROR conditions, then it traps failures as well as other errors. If you also specify a
FAILURE condition, then the ERROR trap ignores failures.

With both the SIGNAL and the CALL instructions, you can specify the name of the trap routine. Add a
NAME keyword followed by the name of the subroutine. If you do not specify the name of the trap
routine, Rexx uses the value ofconditionas the name (Rexx looks for the label ERROR:, FAILURE:,
and so on).

For more information about other conditions that can be trapped, see theOpen Object Rexx: Reference.

7.10.2. Disabling Traps
To turn off a trap for any part of a program, use the SIGNAL or CALL instructions with the OFF
keyword, such as:

SIGNAL OFF ERROR

SIGNAL OFF FAILURE

CALL OFF ERROR

CALL OFF FAILURE

75

Chapter 7. Commands

7.10.3. Using SIGNAL ON ERROR
The following example shows how a program can use SIGNAL ON to trap a command error in a
program that copies a file. In this example, an error occurs because the name of a nonexistent file is
stored in the variable file1. Processing jumps to the clause following the label ERROR:

7.10.4. Using CALL ON ERROR
If there were a way to recover, such as by typing another file name, you could use CALL ON to recover
and resume processing:

7.10.5. A Common Error-Handling Routine
The following example shows a simple error trap that you can use in many programs:

/* Here is a sample "main program" with an error */

signal on error /* enable error handling */

76

Chapter 7. Commands

"ersae myfiles.*" /* mistyped "erase" instruction */

exit

/* And here is a fairly generic error handler for this */

/* program (and many others...) */

error:

say "error" rc "in system call."

say

say "line number =" sigl

say "instruction = " sourceline(sigl)

exit

77

Chapter 7. Commands

78

Chapter 8. Input and Output
Object Rexx supports a stream I/O model. In the stream model, your program reads data from various
devices (such as hard disks, CD-ROMs, and keyboards) as a continuous stream of characters. Your
program also writes data as a continuous stream of characters.

In the stream model, a text file is represented as a stream of characters with special new-line characters
marking the end of each line of text in the stream. A binary file is a stream of characters without an
inherent line structure. Rexx lets you read streams as lines or as characters.

To support the stream model, Object Rexx includes a Stream class and many methods to use on stream
objects. To input or output data, you first create an instance of the Stream class that represents the device
or file you want to use. For example, the following clause creates a stream object for the file
C:\CONFIG.SYS:

/* Create a stream object for CONFIG.SYS */

file=.stream~new("c:\config.sys")

Then you send the stream object messages that are appropriate for the device or data. CONFIG.SYS is a
text file, so you would normally use methods that read or write data as lines. Some of these methods are
LINES, LINEIN, and LINEOUT.

If the stream represents a binary file (such as a WAV, GIF, TIF, AVI, or EXE file), you can use methods
that read and write data as characters. Some of these methods are CHARS, CHARIN, and CHAROUT.

The Stream class includes other methods for opening and closing streams, flushing buffers, seeking,
retrieving stream status, and other input/output operations.

Many of the methods of the Stream class are also available as Rexx built-in functions. Although you can
use the functions, it is preferable to use the Stream class.

Note: In any case, do not mix functions and methods on the same stream to avoid unpredictable
results.

8.1. More about Stream Objects
To use streams in Object Rexx, you create new instances of the Stream class. These stream objects
represent the various data sources and destinations available to your program, such as hard disks,
CD-ROMs, keyboards, displays, printers, serial interfaces, network. Because these sources are
represented as objects, you can work with them in similar (but not identical) ways.

Stream objects can be transient or persistent. An example of a transient (or dynamic) stream object is a
serial interface. Data can be sent or received from serial interfaces, but the data is not stored permanently
by the serial interface itself. Consequently, you cannot, for example, search a position in the data stream.
Once you read or write it, the data cannot be read again.

A disk file is an example of a persistent stream object. Because the data is stored on disk, you can search
forward and backward in the stream and read data that you have previously read. Rexx maintains
separate read and write pointers to a stream. You can move the pointers independently using arguments

79

Chapter 8. Input and Output

on methods such as LINEIN, LINEOUT, CHARIN, and CHAROUT. Rexx also provides SEEK and
POSITION methods for setting the read and write positions.

8.2. Reading a Text File
The following shows an example of reading a file. Program COUNT.CMD counts the words in a text file.
To run it, enter Rexx COUNT followed by the name of the file to be processed:

rexx count myfile.txt

rexx count r:\rexx\articles\devcon7.scr

COUNT uses the String method WORDS to count the words, so COUNT actually counts
blank-delimited tokens:

/* COUNT.CMD - counts the words in a file */

parse arg path /* Get file name from command line */

count=0 /* Initialize a counter */

file=.stream~new(path) /* Create a stream object for the file */

do while file~lines<>0 /* Loop as long as there are lines */

text=file~linein /* Read a line from the file */

count=count+(text~words) /* Count words and add to counter */

end

say count /* Display the count */

To read a file, COUNT first creates a stream object for the file by sending the NEW message to the
Stream class. The file name (with or without a path) is specified as an argument on the NEW method.

Within the DO loop, COUNT reads the lines of the file by sending LINEIN messages to the stream
object (pointed to by the variable File). The first LINEIN message causes Rexx to open the file (the
NEW method does not open the file). LINEIN, by default, reads one line from the file, starting at the
current read position.

Rexx returns only the text of the line to your program, but no new-line characters.

The DO loop is controlled by the expression "file~lines<>0". The LINES method returns the number of
lines remaining to be read in the file, so Rexx processes the loop until no lines remain to be read.

In the COUNT program, the LINEIN request forces Rexx to open the file, but you can also open the file
yourself using the OPEN method of the Stream class. By using the OPEN method, you control the mode
in which Rexx opens the file. When Rexx implicitly opens a file because of a LINEIN request, it tries to
open the file for both reading and writing. If that fails, it opens the file for reading. To ensure that the file
is opened only for reading, you can modify COUNT as follows:

/* COUNT.CMD - counts the words in a file */

parse arg path /* Get file name from command line */

count=0 /* Initialize a counter */

file=.stream~new(path) /* Create a stream object for the file */

openrc=file~open("read") /* Open the file for reading */

if openrc<>"READY:" then do /* Check the return code */

say "Could not open" path||"~ RC="||openrc

exit openrc /* Bail out */

end

80

Chapter 8. Input and Output

do while file~lines<>0 /* Loop as long as there are lines */

text=file~linein /* Read a line from the file */

count=count+(text~words) /* Count words and add to counter */

end

file~close /* Close the file */

say count /* Display the count */

The CLOSE method, used near the end of the previous example, closes the file. A CLOSE is not
required. Rexx closes the stream for you when the program ends. However, it is a good idea to CLOSE
streams to make the resource available for other uses.

8.3. Reading a Text File into an Array
Rexx provides a Stream method, named MAKEARRAY, that reads the contents of a stream into an array
object. MAKEARRAY is convenient when you need to read an entire file into memory for processing.
You can read the entire file with a single Rexx clause--no looping is necessary.

The following example (CVIEW.CMD) uses the MAKEARRAY method to read the entire
CONFIG.SYS file into an array object. CVIEW displays selected lines from CONFIG.SYS. A search
argument can be specified when starting CVIEW:

rexx cview libpath

CVIEW prompts for a search argument if you do not specify one.

If CVIEW finds the string, it displays the line on which the string is found. CVIEW continues to prompt
for new search strings until you enter Q in response to the prompt.

/* CVIEW - display lines from CONFIG.SYS */

parse upper arg search_string /* Get any command line argument */

file=.stream~new("c:\config.sys") /* Create stream object */

lines=file~makearray(line) /* Read file into an array object */

/* LINES points to the array obj. */

do forever

if search_string="" then do /* Prompt for user input */

say "Enter a search string or Q to quit:"

parse upper pull search_string

if search_string="Q" then exit

end /* Do */

do i over lines /* Scan the array */

if pos(search_string,translate(i))>0 then do

say i /* Display any line that matches */

say "="~copies(20)

end /* Do */

end /* do */

search_string="" /* Reset for next search */

end /* do */

81

Chapter 8. Input and Output

8.4. Reading Specific Lines of a Text File
You can read a specific line of a text file by entering a line number as an argument on the LINEIN
method. In this example, line 3 is read from CONFIG.SYS:

/* Read and display line 3 of CONFIG.SYS */

infile=.stream~new("c:\config.sys")

say infile~linein(3)

You do not reduce file I/O by using specific line numbers. Because text files do not have a specific record
length, Rexx must read through the file counting line-end characters to find the line you want.

8.5. Writing a Text File
To write lines of text to a file, you use the LINEOUT method. By default, LINEOUT appends to an
existing file. The following example adds an item to a to-do list that is maintained as a simple text file:

/* TODO.CMD - add to a todo list */

parse arg text

file=.stream~new("todo.dat") /* Create a stream object */

file~lineout(date() time() text) /* Append a line to the file */

exit

In TODO, a text string is provided as the only argument on LINEOUT. Rexx writes the line of text to the
file and then writes a new-line character. You do not have to provide a new-line character in the string to
be written.

If you want to overwrite a file, specify a line number as a second argument to position the write pointer:

file~lineout("13760-0006",35) /* Replace line 35 */

Rexx does not prevent you from overwriting existing new-line characters in the file. Consequently, if you
want to replace a line of the file without overlaying the following lines, the line you write must have the
same length as the line you are replacing. Writing a line that is shorter than an existing line leaves part of
the old line in the file.

Also, positioning the write pointer to line 1 does not replace the file. Rexx starts writing over the existing
data starting at line 1, but if you happen to write fewer bytes than previously existed in the file, your data
is followed by the remainder of the old file.

To replace a file, use the OPEN method with WRITE REPLACE or BOTH REPLACE as an argument.
In the following example, a file named TEMP.DAT is replaced with a random number of lines.
TEMP.DAT is then read and displayed. You can run the example repeatedly to verify that TEMP.DAT is
replaced on each run.

/* REPFILE.CMD - demonstrates file replacement */

testfile=.stream~new("temp.dat") /* Create a new stream object */

testfile~open("both replace") /* Open for read, write, and replace */

numlines=random(1,100) /* Pick a number from 1 to 100 */

runid=random(1,9999) /* Pick a run identifier */

do i=1 to numlines /* Write the lines */

82

Chapter 8. Input and Output

testfile~lineout("Run ID:"||runid "Line number" i)

end

/*

Now read and display the file. The read pointer is already at the

beginning of the file. MAKEARRAY reads from the read position to

the end of the file and returns an array object containing the

lines.

*/

filedata=testfile~makearray("line")

do i over filedata

say i

end

testfile~close

The REPFILE example also demonstrates that Rexx maintains separate read and write pointers to a
stream. The read pointer is still at the beginning of the file while the write pointer is at the end of it.

8.6. Reading Binary Files
A binary file is a file whose data is not organized into lines using new-line characters. In most cases, you
use the character I/O methods (such as CHARS, CHARIN, CHAROUT) on these files.

Suppose, for example, that you want to read the data in the CHORD.WAV file (supplied with Windows
multimedia support in c:\winnt) into a variable:

/* GETCHORD - reads CHORD.WAV into a variable */

chordf=.stream~new("c:\winnt\chord.wav")

say "Number of characters in the file=" chordf~chars

/* Read the whole WAV file into a single Rexx variable. */

/* Rexx variables are limited by available memory. */

mychord=chordf~charin(1,chordf~chars)

say "Number of characters read into variable" mychord~length

The CHARIN method returns a string of characters from the stream, which in this case is CHORD.WAV.
CHARIN accepts two optional arguments. If no arguments are specified, CHARIN reads one character
from the current read position and then advances the read pointer.

The first argument is a start position for reading the file. In the example, 1 is specified so that CHARIN
begins reading with the first character of the file. Omitting the first argument achieves the same result.

The second argument specifies how many characters are to be read. To read all the characters,
infile~chars was specified as the second argument. The CHARS method returns the number of
characters remaining to be read in the input stream receiving the message. CHARIN then returns all the
characters in the stream. CHORD.WAV has about 25000 characters.

83

Chapter 8. Input and Output

8.7. Reading Text Files a Character at a Time
You can use the CHARIN and other character methods on text files. Because you read the file as
characters CHARIN returns the line-end characters to your program. Line methods, on the contrary, do
not return the line-end characters to your program.

The line-end characters on Windows consist of a carriage return (ASCII value of 13) and a line feed
(ASCII value of 10). The line-end characters on Unix/Linux consist of a a line feed (ASCII value of 10).
Rexx adds these characters to the end of every line written using the LINEOUT method. Text-processing
applications, such as the Windows Notepad, also add the characters. When reading a text file with
CHARIN, interpret an ASCII sequence of 13 followed by 10 as the end of a line.

As an example, run the following program. It writes lines to a file using LINEOUT and then reads those
lines using CHARIN. You can mix line methods and character methods. Rexx maintains separate read
and write pointers, so there is no need to close the file or search for another position before reading the
lines just written.

/* LINECHAR.CMD - demonstrate line end characters */

file=.stream~new("test.dat") /* Create a new stream object */

file~open("both replace") /* Open the file for reading and writing */

do i=1 to 3 /* Write three lines to the file */

file~lineout("Line" i)

end /* do */

do while file~chars<>0 /* Read the file a character at a time */

byte=file~charin /* Read a character */

ascii_value=byte~c2d /* Convert character to a decimal value */

if ascii_value=13 then /* Carriage return? */

say "Carriage return"

else if ascii_value=10 then /* Line feed? */

say "Line feed"

else say byte ascii_value /* Ordinary character */

end /* do */

file~close /* Close the file */

Some text-processing programs also write an end-of-file character (ASCII value 26) after the last line.
You can check for that character also when processing text files with character methods. The following
program shows how to handle EOF characters in files.

/* EOFCHAR.CMD - demonstrate end-of-file characters */

file=.stream~new("test.dat") /* Create a new stream object */

do while file~chars<>0 /* Read the file a character at a time */

byte=file~charin /* Read a character */

ascii_value=byte~c2d /* Convert character to a decimal value */

if ascii_value=13 then /* Carriage return? */

say "Carriage return"

else if ascii_value=10 then /* Line feed? */

say "Line feed"

else if ascii_value=26 then /* End of file? */

say "End of File"

else say byte ascii_value /* Ordinary character */

84

Chapter 8. Input and Output

end /* do */

Rexx does not write end-of-file characters when it closes a file that has been opened for writing.

It is not recommended to use line methods to read binary files. Your binary file might not contain any
new-line characters. And, if it did, the characters probably are not meant to be interpreted as new-line
characters.

8.8. Writing Binary Files
To write a binary file, you use CHAROUT. CHAROUT writes only the characters that you specify in an
argument of the method. CHAROUT does not add carriage-return and line-feed characters to the end of
the string. Here is an example:

/* JACK.CMD - demonstrate that CHAROUT does not add new-line characters */

filebin=.stream~new("binary.dat") /* Create a new stream object */

filebin~open("replace") /* Open the file for replacement */

do i=1 to 50 /* Write fifty strings */

filebin~charout("All work and no play makes Jack a dull boy. ")

end

filebin~close /* Close the file so we can display it */

"type binary.dat" /* Use the TYPE command to display file */

Because new-line characters are not added, the text displayed by the TYPE command is concatenated.

CHAROUT writes the string specified and advances the write pointer. If you want to position the write
pointer before writing the string, specify the starting position as a second argument:

filebin~charout("Jack is loosing it.",30) /* start writing at character 30 */

In the example, the file is explicitly opened and closed. If you do not open the file, Rexx attempts to open
the file for both reading and writing. If you do not close the file, Rexx closes it when the procedure ends.
If you omit the CLOSE method in the example, the TYPE command does not type the file. To Windows,
the file does not exist yet because it is not closed yet.

8.9. Closing Files
If you do not explicitly close a file, Rexx closes the file for you at the end of the procedure (that is, the
end of the CMD file in which the files were opened). If your procedure is called as an external procedure
by another Rexx program, Rexx closes the files before returning to the caller. In any case, it is
recommended to explicitly close files when you are finished with them.

8.10. Direct File Access
Rexx provides several ways for you to read records of a file directly (that is, in random order). The
following example, DIRECT.CMD, shows several cases that illustrate some of your options.

85

Chapter 8. Input and Output

DIRECT opens a file for both reading and writing, which is indicated by the BOTH argument of the
OPEN method. The REPLACE argument of the OPEN method causes any existing DIRECT.DAT file to
be replaced.

The OPEN method also has the arguments BINARY and RECLENGTH, which are useful for direct file
access.

The BINARY argument opens the stream in binary mode, which means that line-end characters are
ignored. Binary mode is useful if you want to process binary data using line methods. It is easier to use
line methods for direct access. With line methods, you can search a position in a file using line numbers.
With character methods, you must calculate the character displacement of the file.

The RECLENGTH argument defines a record length of 50 for the file. It enables you to use line methods
in a binary-mode stream. Because Rexx now knows how long each record is, it can calculate the
displacement of the file for a given record number and read the record directly.

/* DIRECT.CMD - demonstration of direct file access */

db=.stream~new("direct.dat")

db~open("both replace binary reclength 50")

/* Write three records of 50 bytes each using LINEOUT */

db~lineout("Cole, Gary: Blue")

db~lineout("McGuire, Rick: Red")

db~lineout("Pritko, Steve: Red. Oops.. I mean blue!")

/* Case 1: Read the records in order using LINEIN. */

say "Case 1: Sequential reads with LINEIN..."

do i=1 to 3

say db~linein

end

say "Press Enter to continue"; parse pull resp

/* Case 2: Read records in random order using LINEIN */

say "Case 2: Random reads with LINEIN..."

do i=1 to 5

lineno=random(1,3)

say "Record" lineno "=" db~linein(lineno)

end

say "Press Enter to continue"; parse pull resp

/* Case 3: Read entire file with CHARIN */

say "Case 3: Read entire file with a single CHARIN..."

say db~charin(1,150)

say "Press Enter to continue"; parse pull resp

/* Case 4: Read file sequentially with CHARIN */

say "Case 4: Sequential reads with CHARIN..."

db~seek(1 read) /* Reposition read pointer */

do i=1 to 3

say db~charin(,50)

end

say "Press Enter to continue"; parse pull resp

/* Case 5: Read records in random order with CHARIN */

86

Chapter 8. Input and Output

say "Case 5: Random reads with CHARIN..."

do i=1 to 5

lineno=random(1,3)

charno=((lineno-1)*50)+1

say "Record" lineno "Character" charno "=" db~charin(charno,50)

end

say "Press Enter to continue"; parse pull resp

/* Case 6: Write records in random order with LINEOUT */

say "Case 6: Replace record 2 with LINEOUT"

db~lineout("This should replace line 2",2)

do i=1 to 3

say db~linein(i)

end

say "Press Enter to continue"; parse pull resp

/* Case 7: Write records in random order with CHAROUT */

say "Case 7: Replace record 2 with CHARIN..."

db~charout("New record 2 from CHAROUT"~left(50,"."),51)

db~seek(1 read) /* Reposition read pointer */

do i=1 to 3

say db~charin(,50)

end

say "Press Enter to continue"; parse pull resp

db~close

After opening the file, DIRECT writes three records using LINEOUT. The records are not padded to 50
characters. Rexx handles that. Because the file is opened in binary mode, Rexx does not write line-end
characters at the end of each line. It only writes the strings one after another to the stream.

In Case 1, the LINEIN method is used to read the file. Because the file is open in binary mode, LINEIN
does not look for line-end characters to mark the end of a line. Instead, it relies on the record length that
you specify on open. In fact, if there were a carriage-return or line-feed sequence of the line, Rexx would
return those characters to your program.

Case 2 demonstrates how to read the file in random order. In this case, the RANDOM function is used to
choose a record to be retrieved. Then the desired record number is specified as an argument on LINEIN.
Note that records are numbered starting from 1, not from 0. Because the file is opened in binary mode,
Rexx does not look for line-end characters. It uses the RECLENGTH to determine where to read. The
LINEIN method can, therefore, retrieve a line directly, without having to scan through the file counting
line-end characters.

Case 3 proves that no line-end characters exist in the file. The CHARIN method reads the entire file.
SAY displays the returned string as one long string. If Rexx inserted line-end characters, each record
would be displayed on a separate line.

Case 4 shows how to read the binary mode file sequentially using CHARIN. But before reading the file,
the read pointer must be reset to the beginning of the file. (Case 3 leaves the read pointer at the end of the
file.) The SEEK method resets the read pointer to character 1, which is the beginning of the file. As with
lines, Rexx numbers characters starting with 1, not 0. Position 1 is the first character of the file.

By default, the number specified with SEEK refers to a character position. You can also search by line
number or by offsets. SEEK allows offsets from the current read or write position, or from the beginning

87

Chapter 8. Input and Output

or ending of the file. If you prefer typing longer method names, you can use POSITION as a synonym
for SEEK.

In the loop of Case 4, the first argument on CHARIN is omitted. The first argument tells where to
position the read pointer. If it is omitted, Rexx automatically advances the read pointer based on the
number of characters you are reading.

Case 5 demonstrates how to read records in random order with CHARIN. In the loop, a random record
number is selected and assigned to variablelineno. This record number is then converted to a character
number, which can be used to specify the read position on CHARIN. Compare Case 5 with Case 2. In
Case 2, which uses line methods, it is not necessary to perform a calculation, you just request the record
you want.

Cases 6 and 7 write records in random order. Case 6 uses LINEOUT, while Case 7 uses CHAROUT.
Because the file is opened in binary mode, LINEOUT does not write line-end characters. You can write
over a line by specifying a line number. With CHAROUT, you need to calculate the character position of
the line to be replaced. Unlike LINEOUT, you need to ensure that the string being written with
CHAROUT is padded to the appropriate record length. Otherwise, part of the record being replaced
remains in the file.

Consequently, for random reading of files with fixed length records, line methods are often the better
choice. However, one limitation of the line methods is that you cannot use them to write sparse records.
That is, if a file already has 200 records, you can use LINEOUT to write record 201, but you cannot use
LINEOUT to write record 300. With CHAROUT, however, you can open a new file and start writing at
character position 5000 if you choose.

8.11. Checking for the Existence of a File
To check for the existence of a file, you use the QUERY method of the Stream class. The following
ISTHERE.CMD program accepts a file name as a command line argument and checks for the existence
of that file.

/* ISTHERE.CMD - test for the existence of a file */

parse arg fid /* Get the file name */

qfile=.stream~new(fid) /* Create stream object */

if qfile~query("exists")="" then /* Check for existence */

say fid "does not exist."

else

say fid "exists."

In the example, a stream object is created for the file even though it might not exist. This is acceptable
because the file is not opened when the stream object is created.

The QUERY method accepts one argument. To check for the existence of a file, you specify the string
"exists" as previously shown. If the file exists, QUERY returns the full-path specification of the stream
object. Otherwise, QUERY returns a null string.

88

Chapter 8. Input and Output

8.12. Getting Other Information about a File
The QUERY method can also return date and time stamps, read position, write position, the size of the
file, and so on. The following example shows most of the QUERY arguments.

/* INFOON.CMD - display information about a file */

parse arg fid

qfile=.stream~new(fid)

fullpath=qfile~query("exists")

if fullpath="" then do

say fid "does not exist."

exit

end

qfile~open("both")

say ""

say "Full path name:" fullpath

say "Date and time stamps (U.S. format):" qfile~query("datetime")

say " (International format):" qfile~query("timestamp")

say ""

say "Handle associated with stream:" qfile~query("handle")

say " Stream type:" qfile~query("streamtype")

say ""

say " Size of the file (characters):" qfile~query("size")

say " Read position (in terms of characters):" qfile~query("seek read")

say "Write position (in terms of characters):" qfile~query("seek write")

qfile~close

8.13. Using Standard I/O
All of the preceding topics dealt with the reading and writing of files. You can use the same methods to
read from standard input (usually the keyboard) and to write to standard output (usually the display). You
can also use the methods to write to the standard error stream. In Object Rexx, these default streams are
represented by public objects of the Monitor class: .input, .output, and .error.

The streams STDIN, STDOUT, and STDERR are transient streams. For transient streams, you cannot
use any method or method argument for positioning the read and write pointers. You cannot, for
example, use the SEEK method on STDOUT.

Writing to STDOUT has the same effect as using the SAY instruction. However, the SAY instruction
always writes line-end characters at the end of the string. By using the CHAROUT method to write to
STDOUT, you can control when line-end characters are written.

The following example shows a modified COUNT program previously shown inReading a Text File.
COUNT has been modified to display a progress indicator. For every line processed, COUNT now uses
CHAROUT to display a single period. COUNT does not write any line-end characters, so the periods
wrap to the next line when they reach the end of the line in the Windows window.

/* count counts the words in a file */

parse arg path /* Get the file name */

count=0 /* Initialize the count */

file=.stream~new(path) /* Create a stream object for the input file */

89

Chapter 8. Input and Output

do while file~lines<>0 /* Process each line of the file */

text=file~linein /* Read a line */

count=count+(text~words) /* Count blank-delimited tokens */

.output~charout(".") /* Write period to STDOUT */

end

say ""

say count

Reading from STDIN using LINEIN is similar to reading with the PARSE PULL instruction:

/* INEXAM.CMD - example of reading STDIN with LINEIN */

/* Prompt for input with SAY and PARSE instructions */

say "What is your name?"

parse pull response

say "Hi" response

say ""

/* Now prompt using LINEOUT and LINEIN */

.output~lineout("What is your name?")

response=.input~linein

.output~lineout("Hi" response)

Using character methods with STDIN and STDOUT gives you more control over the reading and writing
of line-end characters. In the following example, the prompting string is written to STDOUT using
CHAROUT. Because CHAROUT does not add any line-end characters to the stream, the display cursor
is positioned after the prompt string on the same line.

/* INCHAR.CMD - example of reading STDIN with CHARIN */

.output~charout("What is your name? ")

response=.input~charin(,10)

.output~charout("Hi" response)

CHARIN is used to read the user’s response. The user’s keystrokes are not returned to your program
until the user presses the Enter key. In the example, a length of 10 is specified. If fewer characters than
the specified length are available, CHARIN waits until they become available. Otherwise, the characters
are returned to your program. CHARIN does not strip any carriage-return or line-feed characters before
returning the string to your program. You can observe this with INCHAR by typing several strings that
have less than ten characters and pressing Enter after each string:

[C:\]inchar

What is your name? John

Q.

Public

Hi John

Q.

Pu

90

Chapter 8. Input and Output

8.14. Using Windows Devices
You can use Windows devices by substituting a device name (such as PRN, LPT1, LPT2, COM1, and so
on) for the file name when you create a stream object. Then use line or character methods to read or write
the device.

The following example sends data to a printer (device name PRN in the example). In addition to sending
text data, the example also sends a control character for starting a new page. You can send other control
characters or escape sequences in a similar manner. (Generally, these are listed in the manual for the
device.)

Usually the control characters are characters that you cannot type at the keyboard. To use them in your
program, send a D2C message to the character’s ASCII value as shown in the example.

/* PRINTIT.CMD - Prints a text file */

say "Type file name: " /* prompt for a file name */

pull filename /* ...and get it from the user */

infile=.stream~new(filename)

printer=.stream~new("prn:")

newpage = 12~d2c /* save page-eject character */

/* Repeat this loop until no lines remain in the file */

/* and keep track of the line count with COUNT */

do count = 1 until filename~lines = 0

if printer~lineout(infile~linein) <>0 then do

say "Error: unable to write to printer"

leave

end

if count // 50 = 0 then /* if the line count is a */

printer~charout(newpage) /* multiple of 50, then */

/* start a new page by */

/* sending the form feed */

end /* go back to the start of loop */

/* until no lines remain */

infile~close /* close the file */

exit /* end the program normally */

91

Chapter 8. Input and Output

92

Appendix A. Rexx Application Programming
Interfaces

This appendix describes how to interface applications to Rexx or extend the Rexx language by using
Rexx application programming interfaces (APIs). As used here, the term application refers to programs
written in languages other than Rexx. This is usually the C language. Conventions in this appendix are
based on the C language. Refer to a C programming reference manual if you need a better understanding
of these conventions.

The features described here let an application extend many parts of the Rexx language or extend an
application with Rexx. This includes creating handlers for subcommands, external functions, and system
exits.

Subcommands

are commands issued from a Rexx program. A Rexx expression is evaluated and the result is passed
as a command to the currently addressed subcommand handler. Subcommands are used in Rexx
programs running as application macros.

Functions

are direct extensions of the Rexx language. An application can create functions that extend the
native Rexx function set. Functions can be general-purpose extensions or specific to an application.

System exits

are programmer-defined variations of the operating system. The application programmer can tailor
the Rexx interpreter behavior by replacing Rexx system requests.

Subcommand, function, and system exit handlers have similar coding, compilation, and packaging
characteristics.

In addition, applications can manipulate the variables in Rexx programs (seeVariable Pool Interface),
and execute Rexx routines directly from memory (seeMacrospace Interface).

A.1. Handler Characteristics
The basic requirements for subcommand, function, and system exit handlers are:

• Rexx handlers must use the APIENTRY (_stdcall) linkage convention. Handler functions should be
declared with the appropriate type definition from the Rexx.H include file. UsingC++, the functions
must be declared asextern C:

• RexxSubcomHandler

• RexxFunctionHandler

• RexxExitHandler

• A Rexx handler must be packaged as either of the following:

93

Appendix A. Rexx Application Programming Interfaces

• An exported routine within a dynamic-link library (DLL)

• An entry point within an executable (EXE) module

• A handler must be registered with Rexx before it can be used. Rexx uses the registration information
to locate and call the handler. For example, external function registration of a dynamic-link library
external function identifies both the dynamic-link library and routine that contains the external
function. Also note:

• Dynamic-link library handlers are global to the system; any Rexx program can call them.

• Executable file handlers are local to the registering process; only a Rexx program running in the
same process as an executable module can call a handler packaged within that executable module.

A.2. RXSTRINGs
Many of the Rexx application programming interfaces pass Rexx character strings to and from a Rexx
procedure. The RXSTRING data structure is used to describe Rexx character strings. An RXSTRING is
a content-insensitive, flat model character string with a theoretical maximum length of 4 gigabytes. The
following structure defines an RXSTRING:

typedef struct {

ULONG strlength; /* length of string */

PCH strptr; /* pointer to string */

} RXSTRING;

typedef RXSTRING *PRXSTRING; /* pointer to an RXSTRING */

Notes:

1. The Rexx.H include file contains a number of convenient macros for setting and testing RXSTRING
values.

2. An RXSTRING can have a value (including the null string, "") or it can be empty.

• If an RXSTRING has a value, thestrptr field is not null. The RXSTRING macro
RXVALIDSTRING(string) returns TRUE.

• If an RXSTRING is the Rexx null string (""), thestrptr field is not null and thestrlengthfield is 0.
The RXSTRING macro RXZEROLENSTRING(string) returns TRUE.

• If an RXSTRING is empty, the fieldstrptr is null. The RXSTRING macro
RXNULLSTRING(string) returns TRUE.

3. When the Rexx interpreter passes an RXSTRING to a subcommand handler, external function, or
exit handler, the interpreter adds a null character (hexadecimal zero) at the end of the RXSTRING
data. You can use the C string library functions on these strings. However, the RXSTRING data can
also contain null characters. There is no guarantee that the first null character encountered in an
RXSTRING marks the end of the string. You use the C string functions only when you do not expect
null characters in the RXSTRINGs, such as file names passed to external functions. Thestrlength
field in the RXSTRING does not include the terminating null character.

94

Appendix A. Rexx Application Programming Interfaces

4. On calls to subcommand and external functions handlers, as well as to some of the exit handlers, the
Rexx interpreter expects that an RXSTRING value is returned. The Rexx interpreter provides a
default RXSTRING with astrlengthof 256 for the returned information. If the returned data is
shorter than 256 characters, the handler can copy the data into the default RXSTRING and set the
strlengthfield to the length returned.

If the returned data is longer than 256 characters, a new RXSTRING can be allocated using
GlobalAlloc(size). Thestrptr field must point to the new storage and thestrlengthmust be set to
the string length. The Rexx interpreter returns the newly allocated storage to the system for the
handler routine.

A.3. Calling the Rexx Interpreter
A Rexx program can be run directly from the command prompt of the operating system, or from within
an application.

A.3.1. From the Operating System
You can run a Rexx program directly from the operating system command prompt using Rexx followed
by the program name. SeeRunning a Rexx Program.

A.3.2. From within an Application
The Rexx interpreter is a dynamic-link library (DLL) routine (or Unix/Linux shared object). Any
application can call the Rexx interpreter to run a Rexx program. The interpreter is fully reentrant and
supports Rexx procedures running on several threads within the same process.

A C-language prototype for calling Rexx is in the Rexx.H include file.

A.3.3. The RexxStart Function
RexxStart calls the Rexx interpreter to run a Rexx procedure.

retc = RexxStart(ArgCount, ArgList, ProgramName, Instore, EnvName,

CallType, Exits, ReturnCode, Result);

A.3.3.1. Parameters

ArgCount (LONG) - input

is the number of elements in theArgList array. This is the value that theARG()built-in function in
the Rexx program returns.ArgCountincludes RXSTRINGs that represent omitted arguments.
Omitted arguments are empty RXSTRINGs (strptr is null).

95

Appendix A. Rexx Application Programming Interfaces

ArgList (PRXSTRING) - input

is an array of RXSTRING structures that are the Rexx program arguments.

ProgramName (PSZ) - input

is the address of the ASCII name of the Rexx procedure. IfInstoreis null, ProgramNamemust
contain at least the file name of the Rexx procedure. You can also provide an extension, drive, and
path. If you do not specify a file extension, the default is .CMD. A Rexx program can use any
extension. If you do not provide the path and the drive, the Rexx interpreter uses the usual file
search (current directory, then environment path).

If Instoreis not null,ProgramNameis the name used in the PARSE SOURCE instruction. IfInstore
requests a Rexx procedure from the macrospace,ProgramNameis the macrospace function name
(seeMacrospace Interface).

Instore (PRXSTRING) - input

is an array of two RXSTRING descriptors for in-storage Rexx procedures. If thestrptr fields of
both RXSTRINGs are null, the interpreter searches for Rexx procedureProgramNamein the Rexx
macrospace (seeMacrospace Interface). If the procedure is not in the macrospace, the call to
RexxStart terminates with an error return code.

If either Instore strptrfield is not null,Instoreis used to run a Rexx procedure directly from storage.

Instore[0]

is an RXSTRING describing a memory buffer that contains the Rexx procedure source. The
source must be an exact image of a Rexx procedure disk file, complete with carriage returns,
line feeds, and end-of-file characters.

Instore[1]

is an RXSTRING containing the translated image of the Rexx procedure. IfInstore[1] is
empty, the Rexx interpreter returns the translated image inInstore[1] when the Rexx procedure
finishes running. The translated image may be used inInstore[1] on subsequent RexxStart
calls.

If Instore[1] is not empty, the interpreter runs the translated image directly. The program
source provided inInstore[0] is used only if the Rexx procedure uses the SOURCELINE
built-in function.Instore[0] can be empty if SOURCELINE is not used. IfInstore[0] is empty
and the procedure uses the SOURCELINE built-in function, SOURCELINE() returns no lines
and any attempt to access the source returns Error 40.

If Instore[1] is not empty, but does not contain a valid Rexx translated image, unpredictable
results can occur. The Rexx interpreter might be able to determine that the translated image is
incorrect and translate the source again.

Instore[1] is both an input and an output parameter.

96

Appendix A. Rexx Application Programming Interfaces

If the procedure is executed from disk, theInstore pointermust be null. If the first argument string
in Arglist contains the string //T and theCallTypeis RXCOMMAND, the interpreter performs a
syntax check on the procedure source, but does not execute it and does not store any images.

The program calling RexxStart must releaseInstore[1] usingRexxFreeMemory(ptr) when the
translated image is no longer needed.

Only the interpreter version that created the image can run the translated image. Therefore, neither
change the format of the translated image of a Rexx program, nor move a translated image to other
systems or save it for later use. You can, however, use the translated image several times during a
single application execution.

EnvName (PSZ) - input

is the address of the initial ADDRESS environment name. The ADDRESS environment is a
subcommand handler registered using RexxRegisterSubcomExe or RexxRegisterSubcomDll.
EnvNameis used as the initial setting for the Rexx ADDRESS instruction.

If EnvNameis null, the file extension is used as the initial ADDRESS environment. The
environment name cannot be longer than 250 characters.

CallType (LONG) - input

is the type of the Rexx procedure execution. Allowed execution types are:

RXCOMMAND

The Rexx procedure is a system or application command. Rexx commands usually have a
single argument string. The Rexx PARSE SOURCE instruction returnsCOMMAND as the second
token.

RXSUBROUTINE

The Rexx procedure is a subroutine of another program. The subroutine can have several
arguments and does not need to return a result. The Rexx PARSE SOURCE instruction returns
SUBROUTINE as the second token.

RXFUNCTION

The Rexx procedure is a function called from another program. The subroutine can have
several arguments and must return a result. The Rexx PARSE SOURCE instruction returns
FUNCTION as the second token.

Exits (PRXSYSEXIT) - input

is an array of RXSYSEXIT structures defining exits for the Rexx interpreter to be used. The
RXSYSEXIT structures have the following form:

typedef struct {

PSZ sysexit_name; /* name of exit handler */

LONG sysexit_code; /* system exit function code */

} RXSYSEXIT;

97

Appendix A. Rexx Application Programming Interfaces

Thesysexit_nameis the address of an ASCII exit handler name registered with
RexxRegisterExitExe or RexxRegisterExitDll.Sysexit_codeis a code identifying the handler exit
type. SeeSystem Exit Interfacefor exit code definitions. An RXENDLST entry identifies the
system-exit list end.Exitsmust be null if exits are not used.

ReturnCode (PSHORT) - output

is the integer form of theResultstring. If theResultstring is a whole number in the range -(2**15)
to 2**15-1, it is converted to an integer and also returned inReturnCode.

Result (PRXSTRING) - output

is the string returned from the Rexx procedure with the Rexx RETURN or EXIT instruction. A
default RXSTRING can be provided for the returned result. If a default RXSTRING is not provided
or the default is too small for the returned result, the Rexx interpreter allocates an RXSTRING
usingGlobalAlloc(size). The caller of RexxStart is responsible for releasing the RXSTRING
storage withRexxFreeMemory(ptr).

The Rexx interpreter does not add a terminating null toResult.

A.3.3.2. Return Codes

The possible RexxStart return codes are:

negative

Interpreter errors. See the Appendix in theOpen Object Rexx: Referencefor the list of Rexx errors.

0

No errors occurred. The Rexx procedure ran normally.

positive

A system return code that indicates problems finding or loading the interpreter. See the return codes
for the Windows functions LoadLibrary and GetProcAddress for details.

When a macrospace Rexx procedure (seeMacrospace Interface) is not loaded in the macrospace, the
return code is -3 ("Program is unreadable").

A.3.3.3. Example

LONG return_code; /* interpreter return code */

RXSTRING argv[1]; /* program argument string */

RXSTRING retstr; /* program return value */

SHORT rc; /* converted return code */

CHAR return_buffer[250]; /* returned buffer */

/* build the argument string */

98

Appendix A. Rexx Application Programming Interfaces

MAKERXSTRING(argv[0], macro_argument,

strlen(macro_argument));

/* set up default return */

MAKERXSTRING(retstr, return_buffer, sizeof(return_buffer));

return_code = RexxStart(1, /* one argument */

argv, /* argument array */

"CHANGE.ED", /* Rexx procedure name */

NULL, /* use disk version */

"Editor", /* default address name */

RXCOMMAND, /* calling as a subcommand */

NULL, /* no exits used */

&rc, /* converted return code */

&retstr); /* returned result */

/* process return value */

...

RexxWaitForTermination();

/* need to return storage? */

if (RXSTRPTR(retval) != return_buffer)

GlobalFree(RXSTRPTR(retval)); /* release the RXSTRING */

When RexxStart is executed within an external program (usually a C program), it runs synchronously
with the main Rexx activity (thread) that it started. That is, when the main activity terminates, RexxStart
returns, and the external program continues running.

To run RexxStart asynchronously, you can start several concurrent activities from the main activity using
START or REPLY (seeConcurrency). RexxStart is still synchronous to the main activity, that is, it
returns when the main activity terminates, but it is asynchronous to the concurrent activities. If a
concurrent activity runs longer than the main activity, RexxStart returns when the main activity ends, but
the concurrent activity continues to run.

If, however, a concurrent activity is still running when the external program ends, the activity is
terminated. To ensure that all activities finish executing, use RexxWaitForTermination or a looped
RexxDidRexxTerminate in your external program after RexxStart. The use of RexxWaitForTermination
is recommended also for programs that are not expected to use concurrency.

The following example demonstrates how to call MyCMD.CMD from a Cobol program (Rexx is running
in the same process as the Cobol program).

PROCESS PGMNAME(MIXED)

* You need to specify Rexx.LIB when you link this program,

* for example on the COB2 command.

* Note that the name RexxStart, used later, is case-sensitive,

* and requires the PGMNAME(MIXED) compiler option.

IDENTIFICATION DIVISION.

PROGRAM-ID. ’CALLRexx’

AUTHOR. IBM VISUALAGE FOR COBOL.

*NAME: CALLRexx ***

99

Appendix A. Rexx Application Programming Interfaces

* ***

*FUNCTION: CALL A Rexx PROCEDURE NAME XXXXXXXX, ***

* PASSING ARGUMENT AND GETTING RETURNED DATA. ***

* ***

*EXTERNAL SUBROUTINES: NONE ***

*COPY MEMBERS: NONE ***

* ***

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

DATA DIVISION.

WORKING-STORAGE SECTION.

* INTERNAL VARIABLES *

01 WS-WORK-FIELDS.

05 WS-RESULT-AREA PIC X(255) VALUE SPACES.

05 WS-ARGUMENT-AREA PIC X(255) VALUE SPACES.

05 WS-PARM1 PIC X(50) VALUE ’55’.

05 WS-PARM2 PIC X(8) VALUE ’66’.

01 WS-RexxSTART-PARAMETERS.

05 WS-Rexx-ARGUMENT-COUNT PIC S9(9) VALUE +1 COMP-5.

05 WS-Rexx-ARGUMENT-LIST.

10 WS-ARG-LENGTH PIC 9(9) COMP-5.

10 WS-ARG-POINTER POINTER.

05 WS-Rexx-PROGRAM-NAME PIC X(255) VALUE LOW-VALUES.

05 WS-Rexx-ENV-NAME PIC X(20) VALUE LOW-VALUES.

05 WS-Rexx-RETURN-CODE PIC S9(9) VALUE 0 COMP-5.

05 WS-Rexx-RESULT.

10 WS-RESULT-LENGTH PIC 9(9) COMP-5.

10 WS-RESULT-POINTER POINTER.

05 WS-Rexx-INTERPRETER-RC PIC S9(9) COMP-5.

LINKAGE SECTION.

PROCEDURE DIVISION.

SET WS-ARG-POINTER TO ADDRESS OF WS-ARGUMENT-AREA.

MOVE LENGTH OF WS-ARGUMENT-AREA

TO WS-ARG-LENGTH.

STRING WS-PARM1 DELIMITED BY SPACE

’ ’ DELIMITED BY SIZE

WS-PARM2 DELIMITED BY SPACE

INTO WS-ARGUMENT-AREA

END-STRING.

100

Appendix A. Rexx Application Programming Interfaces

STRING ’MYCMD’ DELIMITED BY SIZE

X’00’ DELIMITED BY SIZE

INTO WS-Rexx-PROGRAM-NAME

END-STRING.

STRING ’CGISRV’ DELIMITED BY SIZE

X’00’ DELIMITED BY SIZE

INTO WS-Rexx-ENV-NAME

END-STRING.

SET WS-RESULT-POINTER TO

ADDRESS OF WS-RESULT-AREA.

MOVE LENGTH OF WS-RESULT-AREA TO WS-RESULT-LENGTH.

* Note that the name RexxStart is case sensitive

CALL ’RexxStart’ USING

BY VALUE WS-Rexx-ARGUMENT-COUNT

BY REFERENCE WS-Rexx-ARGUMENT-LIST

BY REFERENCE WS-Rexx-PROGRAM-NAME

BY VALUE 0

BY REFERENCE WS-Rexx-ENV-NAME

BY VALUE 0

BY VALUE 0

BY REFERENCE WS-Rexx-RETURN-CODE

BY REFERENCE WS-Rexx-RESULT

RETURNING WS-Rexx-INTERPRETER-RC.

DISPLAY WS-Rexx-RETURN-CODE ’ ’ WS-Rexx-INTERPRETER-RC.

DISPLAY WS-RESULT-LENGTH.

DISPLAY WS-RESULT-AREA.

GOBACK.

A.3.4. The RexxWaitForTermination Function
RexxWaitForTermination waits for the termination of all activities of the program that were started by
RexxStart. This function puts your program into a wait state. It cannot continue until the activities have
finished.

RexxWaitForTermination();

A.3.5. The RexxDidRexxTerminate Function
RexxDidRexxTerminate checks for the termination of all activities of the program that were started by
RexxStart, and allows your program to continue.

retc = RexxDidRexxTerminate();

A.3.5.1. Return Codes

101

Appendix A. Rexx Application Programming Interfaces

0

Activities are still running.

1

All activities have been terminated.

A.3.5.2. Example

while (!RexxDidRexxTerminate())

{

/* do your processing */

}

A.4. Subcommand Interface
An application can create handlers to process commands from a Rexx program. Once created, the
subcommand handler name can be used with the RexxStart function or the Rexx ADDRESS instruction.
Subcommand handlers must be registered with the RexxRegisterSubcomExe or RexxRegisterSubcomDll
function before they are used.

A.4.1. Registering Subcommand Handlers
A subcommand handler can reside in the same module (executable or DLL) as an application, or it can
reside in a separate dynamic-link library. It is recommended that an application that runs Rexx
procedures with RexxStart uses RexxRegisterSubcomExe to register subcommand handlers. The Rexx
interpreter passes commands to the application subcommand handler entry point. Subcommand handlers
created with RexxRegisterSubcomExe are available only to Rexx programs called from the registering
application.

The RexxRegisterSubcomDll interface creates subcommand handlers that reside in a dynamic-link
library. Any Rexx program using the Rexx ADDRESS instruction can access a dynamic-link library
subcommand handler. A dynamic-link library subcommand handler can also be registered directly from
a Rexx program using the RXSUBCOM command.

A.4.1.1. Creating Subcommand Handlers

The following example is a sample subcommand handler definition.

ULONG APIENTRY command_handler(

PRXSTRING Command, /* Command string from Rexx */

PUSHORT Flags, /* Returned Error/Failure flags */

PRXSTRING Retstr); /* Returned RC string */

where:

102

Appendix A. Rexx Application Programming Interfaces

Command

is the command string created by Rexx.

commandis a null-terminated RXSTRING containing the issued command.

Flags

is the subcommand completion status. The subcommand handler can indicate success, error, or
failure status. The subcommand handler can setFlagsto one of the following values:

RXSUBCOM_OK

The subcommand completed normally. No errors occurred during subcommand processing and
the Rexx procedure continues when the subcommand handler returns.

RXSUBCOM_ERROR

A subcommand error occurred. RXSUBCOM_ERROR indicates a subcommand error
occurred; for example, incorrect command options or syntax.

If the subcommand handler setsFlagsto RXSUBCOM_ERROR, the Rexx interpreter raises
an ERROR condition if SIGNAL ON ERROR or CALL ON ERROR traps have been created.
If TRACE ERRORS has been issued, Rexx traces the command when the subcommand
handler returns.

RXSUBCOM_FAILURE

A subcommand failure occurred. RXSUBCOM_FAILURE indicates that general subcommand
processing errors have occurred. For example, unknown commands usually return
RXSUBCOM_FAILURE.

If the subcommand handler setsFlagsto RXSUBCOM_FAILURE, the Rexx interpreter raises
a FAILURE condition if SIGNAL ON FAILURE or CALL ON FAILURE traps have been
created. If TRACE FAILURES has been issued, Rexx traces the command when the
subcommand handler returns.

Retstr

is the address of an RXSTRING for the return code. It is a character string return code that is
assigned to the Rexx special variable RC when the subcommand handler returns to Rexx. The Rexx
interpreter provides a default 256-byte RXSTRING inRetstr. A longer RXSTRING can be
allocated withGlobalAlloc(size) if the return string is longer than the default RXSTRING. If the
subcommand handler setsRetstrto an empty RXSTRING (a nullstrptr), Rexx assigns the string 0
to RC.

A.4.1.1.1. Example

ULONG APIENTRY Edit_Commands(

PRXSTRING Command, /* Command string passed from the caller */

103

Appendix A. Rexx Application Programming Interfaces

PUSHORT Flags, /* pointer too short for return of flags */

PRXSTRING Retstr) /* pointer to RXSTRING for RC return */

{

LONG command_id; /* command to process */

LONG rc; /* return code */

PSZ scan_pointer; /* current command scan */

PSZ target; /* general editor target */

scan_pointer = Command->strptr; /* point to the command */

/* resolve command */

command_id = resolve_command(&scan_pointer);

switch (command_id) { /* process based on command */

case LOCATE: /* locate command */

/* validate rest of command */

if (rc = get_target(&scan_pointer, &target)) {

Flags = RXSUBCOM_ERROR; / raise an error condition */

break; /* return to Rexx */

}

rc = locate(target); /* locate target in the file */

Flags = RXSUBCOM_OK; / not found is not an error */

break; /* finish up */

...

default: /* unknown command */

rc = 1; /* return code for unknown */

Flags = RXSUBCOM_FAILURE; / this is a command failure */

break;

}

sprintf(Retstr->strptr, "%d", rc); /* format return code string */

/* and set the correct length */

Retstr->strlength = strlen(Retstr->strptr);

return 0; /* processing completed */

}

A.4.2. Subcommand Interface Functions
The following sections explain the functions for registering and using subcommand handlers.

A.4.2.1. RexxRegisterSubcomDll

RexxRegisterSubcomDll registers a subcommand handler that resides in a dynamic-link library routine.

retc = RexxRegisterSubcomDll(EnvName, ModuleName, EntryPoint,

UserArea, DropAuth);

104

Appendix A. Rexx Application Programming Interfaces

A.4.2.1.1. Parameters

EnvName (PSZ) - input

is the address of an ASCII subcommand handler name.

ModuleName (PSZ) - input

is the address of an ASCII dynamic-link library name.ModuleNameis the DLL file containing the
subcommand handler routine.

EntryPoint (PSZ) - input

is the address of an ASCII dynamic-link library procedure name.EntryPointis the name of the
exported routine withinModuleNamethat Rexx calls as a subcommand handler.

UserArea (PUCHAR) - input

is the address of an 8-byte area of user-defined information. The 8 bytesUserAreaaddresses are
saved with the subcommand handler registration.UserAreacan be null if there is no user
information to be saved. The RexxQuerySubcom function can retrieve the saved user information.

DropAuth (ULONG) - input

is the drop authority.DropAuthidentifies the processes that can deregister the subcommand handler.
The possibleDropAuthvalues are:

RXSUBCOM_DROPPABLE

Any process can deregister the subcommand handler with RexxDeregisterSubcom.

RXSUBCOM_NONDROP

Only a thread within the same process as the thread that registered the handler can deregister
the handler with RexxDeregisterSubcom.

A.4.2.1.2. Return Codes

RXSUBCOM_OK 0 A subcommand has executed successfully.

RXSUBCOM_DUP 10 A duplicate handler name has been successfully
registered. There is either an executable handler
with the same name registered in another process,
or a DLL handler with the same name registered in
another DLL. (To address this subcommand, you
must specify its library name.)

105

Appendix A. Rexx Application Programming Interfaces

RXSUBCOM_NOTREG 30 Registration was unsuccessful due to duplicate
handler and dynalink names
(RexxRegisterSubcomExe or
RexxRegisterSubcomDll); the subroutine
environment is not registered (other Rexx
subcommand functions).

RXSUBCOM_NOEMEM 1002 There is insufficient memory available to complete
this request.

A.4.2.1.3. Remarks

EntryPointcan only be a 32-bit routine.

A.4.2.2. RexxRegisterSubcomExe

RexxRegisterSubcomExe registers a subcommand handler that resides within the application code.

retc = RexxRegisterSubcomExe(EnvName, EntryPoint, UserArea);

A.4.2.2.1. Parameters

EnvName (PSZ) - input

is the address of an ASCII subcommand handler name.

EntryPoint (PFN) - input

is the address of the subcommand handler entry point within the application executable code.

UserArea (PUCHAR) - input

is the address of an 8-byte area of user-defined information. The 8 bytesUserAreaaddresses are
saved with the subcommand handler registration.UserAreacan be null if there is no user
information to be saved. The RexxQuerySubcom function can retrieve the user information.

A.4.2.2.2. Return Codes

RXSUBCOM_OK 0 A subcommand has executed successfully.

RXSUBCOM_DUP 10 A duplicate handler name has been successfully
registered. There is either an executable handler
with the same name registered in another process,
or a DLL handler with the same name registered in
another DLL. (To address this subcommand, you
must specify its library name.)

106

Appendix A. Rexx Application Programming Interfaces

RXSUBCOM_NOTREG 30 Registration was unsuccessful due to duplicate
handler and dynalink names
(RexxRegisterSubcomExe or
RexxRegisterSubcomDll); the subroutine
environment is not registered (other Rexx
subcommand functions).

RXSUBCOM_NOEMEM 1002 There is insufficient memory available to complete
this request.

A.4.2.2.3. Remarks

If EnvNameis the same as a subcommand handler already registered with RexxRegisterSubcomDll,
RexxRegisterSubcomExe returns RXSUBCOM_DUP. This is not an error condition. It means that
RexxRegisterSubcomExe has successfully registered the new subcommand handler.

A Rexx procedure can register dynamic-link library subcommand handlers with the RXSUBCOM
command. For example:

/* register Dialog Manager */

/* subcommand handler */

"RXSUBCOM REGISTER ISPCIR ISPCIR ISPCIR"

Address ispcir /* send commands to dialog mgr */

The RXSUBCOM command registers the Dialog Manager subcommand handler ISPCIR as routine
ISPCIR in the ISPCIR dynamic-link library.

A.4.2.2.4. Example

WORKAREARECORD *user_info[2]; /* saved user information */

user_info[0] = global_workarea; /* save global work area for */

user_info[1] = NULL; /* re-entrance */

rc = RexxRegisterSubcomExe("Editor", /* register editor handler */

&Edit_Commands, /* located at this address */

user_info); /* save global pointer */

A.4.2.3. RexxDeregisterSubcom

RexxDeregisterSubcom deregisters a subcommand handler.

retc = RexxDeregisterSubcom(EnvName, ModuleName);

A.4.2.3.1. Parameters

107

Appendix A. Rexx Application Programming Interfaces

EnvName (PSZ) - input

is the address of an ASCII subcommand handler name.

ModuleName (PSZ) - input

is the address of an ASCII dynamic-link library name.ModuleNameis the name of the
dynamic-link library containing the registered subcommand handler. WhenModuleNameis null,
RexxDeregisterSubcom searches the RexxRegisterSubcomExe subcommand handler list for a
handler within the current process. If RexxDeregisterSubcom does not find a
RexxRegisterSubcomExe handler, it searches the RexxRegisterSubcomDll subcommand handler
list.

A.4.2.3.2. Return Codes

RXSUBCOM_OK 0 A subcommand has executed successfully.

RXSUBCOM_NOTREG 30 Registration was unsuccessful due to duplicate
handler and dynalink names
(RexxRegisterSubcomExe or
RexxRegisterSubcomDll); the subroutine
environment is not registered (other Rexx
subcommand functions).

RXSUBCOM_NOCANDROP 40 The subcommand handler has been registered as
"not droppable."

A.4.2.3.3. Remarks

The handler is removed from the active subcommand handler list.

A.4.2.4. RexxQuerySubcom

RexxQuerySubcom queries a subcommand handler and retrieves saved user information.

retc = RexxQuerySubcom(EnvName, ModuleName, Flag, UserWord);

A.4.2.4.1. Parameters

EnvName (PSZ) - input

is the address of an ASCII subcommand handler name.

ModuleName (PSZ) - input

is the address of an ASCII dynamic-link library name.ModuleNamerestricts the query to a
subcommand handler within theModuleNamedynamic-link library. WhenModuleNameis null,
RexxQuerySubcom searches the RexxRegisterSubcomExe subcommand handler list for a handler

108

Appendix A. Rexx Application Programming Interfaces

within the current process. If RexxQuerySubcom does not find a RexxRegisterSubcomExe handler,
it searches the RexxRegisterSubcomDll subcommand handler list.

Flag (PUSHORT) - output

is the subcommand handler registration flag.Flag is theEnvNamesubcommand handler registration
status. When RexxQuerySubcom returns RXSUBCOM_OK, theEnvNamesubcommand handler is
currently registered. When RexxQuerySubcom returns RXSUBCOM_NOTREG, theEnvName
subcommand handler is not registered.

UserWord (PUCHAR) - output

is the address of an 8-byte area that receives the user information saved with
RexxRegisterSubcomExe or RexxRegisterSubcomDll.UserWordcan be null if the saved user
information is not required.

A.4.2.4.2. Return Codes

RXSUBCOM_OK 0 A subcommand has executed successfully.

RXSUBCOM_NOTREG 30 Registration was unsuccessful due to duplicate
handler and dynalink names
(RexxRegisterSubcomExe or
RexxRegisterSubcomDll); the subroutine
environment is not registered (other Rexx
subcommand functions).

A.4.2.4.3. Example

ULONG APIENTRY Edit_Commands(

PRXSTRING Command, /* Command string passed from the caller */

PUSHORT Flags, /* pointer too short for return of flags */

PRXSTRING Retstr) /* pointer to RXSTRING for RC return */

{

WORKAREARECORD *user_info[2]; /* saved user information */

WORKAREARECORD global_workarea; /* application data anchor */

USHORT query_flag; /* flag for handler query */

rc = RexxQuerySubcom("Editor", /* retrieve application work */

NULL, /* area anchor from Rexx */

&query_flag,

user_info);

global_workarea = user_info[0]; /* set the global anchor */

109

Appendix A. Rexx Application Programming Interfaces

A.5. External Function Interface
There are two types of Rexx external functions:

• Routines written in Rexx

• Routines written in other Windows-supported languages

External functions written in Rexx do not need to be registered. These functions are found by a disk
search for a Rexx procedure file that matches the function name.

A.5.1. Registering External Functions
An external function can reside in the same module (executable or DLL) as an application, or in a
separate dynamic-link library. RexxRegisterFunctionExe registers external functions within an
application module. External functions registered with RexxRegisterFunctionExe are available only to
Rexx programs called from the registering application.

The RexxRegisterFunctionDll interface registers external functions that reside in a dynamic-link library.
Any Rexx program can access such an external function after it is registered. It can also be registered
directly from a Rexx program using the Rexx RXFUNCADD built-in function.

A.5.1.1. Creating External Functions

The following is a sample external function definition:

ULONG APIENTRY SysLoadFuncs(

PSZ Name, /* name of the function */

LONG Argc, /* number of arguments */

RXSTRING Argv[], /* list of argument strings */

PSZ Queuename, /* current queue name */

PRXSTRING Retstr) /* returned result string */

where:

Name

is the address of an ASCII function name used to call the external function.

Argc

is the number of elements in theArgvarray.ArgvcontainsArgcRXSTRINGs.

Argv

is an array of null-terminated RXSTRINGs for the function arguments.

Queuename

is the name of the currently defined external Rexx data queue.

110

Appendix A. Rexx Application Programming Interfaces

Retstr

is the address of an RXSTRING for the returned value.Retstris a character string function or
subroutine return value. When a Rexx program calls an external function with the Rexx CALL
instruction,Retstris assigned to the special Rexx variable RESULT. When the Rexx program calls
an external function with a function call,Retstris used directly within the Rexx expression.

The Rexx interpreter provides a default 256-byte RXSTRING inRetstr. A longer RXSTRING can
be allocated withGlobalAlloc(size) if the returned string is longer than 256 bytes. The Rexx
interpreter releasesRetstrwith GlobalFree(ptr) when the external function completes.

Returns

is an integer return code from the function. When the external function returns0, the function
completed successfully.Retstrcontains the return value. When the external function returns a
nonzero return code, the Rexx interpreter raises Rexx error 40, "Incorrect call to routine". The
Retstrvalue is ignored.

If the external function does not have a return value, the function must setRetstrto an empty
RXSTRING (nullstrptr). When an external function called as a function does not return a value, the
interpreter raises error 44, "Function or message did not return data". When an external function
called with the Rexx CALL instruction does not return a value, the Rexx interpreter drops
(unassigns) the special variable RESULT.

A.5.2. Calling External Functions
RexxRegisterFunctionExe external functions are local to the registering process. Another process can call
the RexxRegisterFunctionExe to make these functions local to this process. RexxRegisterFunctionDll
functions, however, are available to all processes. The function names cannot be duplicated.

A.5.2.1. Example

ULONG APIENTRY SysMkDir(

PSZ Name, /* name of the function */

LONG Argc, /* number of arguments */

RXSTRING Argv[], /* list of argument strings */

PSZ Queuename, /* current queue name */

PRXSTRING Retstr) /* returned result string */

{

ULONG rc; /* Return code of function */

if (Argc != 1) /* must be 1 argument */

return 40; /* incorrect call if not */

/* make the directory */

rc = !CreateDirectory(Argv[0].strptr, NULL);

111

Appendix A. Rexx Application Programming Interfaces

sprintf(Retstr->strptr, "%d", rc); /* result: <> 0 failed */

/* set proper string length */

Retstr->strlength = strlen(Retstr->strptr);

return 0; /* successful completion */

}

A.5.3. External Function Interface Functions
The following sections explain the functions for registering and using external functions.

A.5.3.1. RexxRegisterFunctionDll

RexxRegisterFunctionDll registers an external function that resides in a dynamic-link library routine.

retc = RexxRegisterFunctionDll(FuncName, ModuleName, EntryPoint);

A.5.3.1.1. Parameters

FuncName (PSZ) - input

is the address of an external function name. The function name must not exceed 1024 characters.

ModuleName (PSZ) - input

is the address of an ASCII dynamic-link library name.ModuleNameis the DLL file containing the
external function routine.

EntryPoint (PSZ) - input

is the address of an ASCII dynamic-link procedure name.EntryPointis the name of the exported
external function routine withinModuleName.

A.5.3.1.2. Return Codes

RXFUNC_OK 0 The call to the function completed successfully.

RXFUNC_DEFINED 10 The requested function is already registered.

RXFUNC_NOMEM 20 There is not enough memory to register a new
function.

A.5.3.1.3. Remarks

EntryPointcan only be a 32-bit routine.

External functions that reside in a dynamic-link library routine must be exported. You can do this by
specifying a module-definition (.DEF) file that lists the external functions in the EXPORT section. You
must export these functions with both the mixed-case and the uppercase name. For example:

112

Appendix A. Rexx Application Programming Interfaces

EXPORTS

SYSMKDIR = SysMkDir

A Rexx procedure can register dynamic-link library-external functions with the RXFUNCADD built-in
function. For example:

/* register function SysLoadFuncs */

/* in dynamic link library RexxUTIL*/

Call RxFuncAdd "SysLoadFuncs", "RexxUTIL", "SysLoadFuncs"

Call SysLoadFuncs /* call to load other functions */

RXFUNCADD registers the external function SysLoadFuncs as routine SysLoadFuncs in the RexxUTIL
dynamic-link library. SysLoadFuncs registers additional functions in RexxUTIL.DLL with
RexxRegisterFunctionDll. See the SysLoadFuncs routine below for a function registration example.

A.5.3.1.4. Example

static PSZ RxFncTable[] = /* function package list */

{

"SysCls",

"SysCurpos",

"SysCurState",

"SysDriveInfo",

}

ULONG SysLoadFuncs(

PSZ Name, /* name of the function */

LONG Argc, /* number of arguments */

RXSTRING Argv[], /* list of argument strings */

PSZ Queuename, /* current queue name */

PRXSTRING Retstr) /* returned result string */

{

INT entries; /* Number of entries */

INT j; /* counter */

Retstr->strlength = 0; /* set null string return */

if (Argc > 0) /* check arguments */

return 40; /* too many, raise an error */

/* get count of arguments */

entries = sizeof(RxFncTable)/sizeof(PSZ);

/* register each function in */

for (j = 0; j < entries; j++) { /* the table */

RexxRegisterFunctionDll(RxFncTable[j],

"RexxUTIL", RxFncTable[j]);

}

return 0; /* successful completion */

}

113

Appendix A. Rexx Application Programming Interfaces

A.5.3.2. RexxRegisterFunctionExe

RexxRegisterFunctionExe registers an external function that resides within the application code.

retc = RexxRegisterFunctionExe(FuncName, EntryPoint);

A.5.3.2.1. Parameters

FuncName (PSZ) - input

is the address of an external function name. The function name must not exceed 1024 characters.

EntryPoint (PFN) - input

is the address of the external function entry point within the executable application file. Functions
registered with RexxRegisterFunctionExe are local to the current process. Rexx procedures in the
same process as the RexxRegisterFunctionExe issuer can call local external functions.

A.5.3.2.2. Return Codes

RXFUNC_OK 0 The call to the function completed successfully.

RXFUNC_DEFINED 10 The requested function is already registered.

RXFUNC_NOMEM 20 There is not enough memory to register a new
function.

A.5.3.3. RexxDeregisterFunction

RexxDeregisterFunction deregisters an external function.

retc = RexxDeregisterFunction(FuncName);

A.5.3.3.1. Parameters

FuncName (PSZ) - input

is the address of an external function name to be deregistered.

A.5.3.3.2. Return Codes

RXFUNC_DEFINED 10 The requested function is already registered.

RXFUNC_NOTREG 30 The requested function is not registered.

114

Appendix A. Rexx Application Programming Interfaces

A.5.3.4. RexxQueryFunction

RexxQueryFunction queries the existence of a registered external function.

retc = RexxQueryFunction(FuncName);

A.5.3.4.1. Parameters

FuncName (PSZ) - input

is the address of an external function name to be queried.

A.5.3.4.2. Return Codes

RXFUNC_OK 0 The call to the function completed successfully.

RXFUNC_NOTREG 30 The requested function is not registered.

A.5.3.4.3. Remarks

RexxQueryFunction returns RXFUNC_OK only if the requested function is available to the current
process. If not, the RexxQueryFunction searches the external RexxRegisterFunctionDll function list.

A.6. System Exit Interface
The Rexx system exits let the programmer create a customized Rexx operating environment. You can set
up user-defined exit handlers to process specific Rexx activities.

Applications can create exits for:

• The administration of resources at the beginning and the end of interpretation

• Linkages to external functions and subcommand handlers

• Special language features; for example, input and output to standard resources

• Polling for halt and external trace events

Exit handlers are similar to subcommand handlers and external functions. Applications must register
named exit handlers with the Rexx interpreter. Exit handlers can reside in dynamic-link libraries or
within an executable application module.

A.6.1. Writing System Exit Handlers
The following is a sample exit handler definition:

115

Appendix A. Rexx Application Programming Interfaces

LONG APIENTRY Rexx_IO_exit(

LONG ExitNumber, /* code defining the exit function */

LONG Subfunction, /* code defining the exit subfunction */

PEXIT ParmBlock); /* function-dependent control block */

where:

ExitNumber

is the major function code defining the type of exit call.

Subfunction

is the subfunction code defining the exit event for the call.

ParmBlock

is a pointer to the exit parameter list.

The exit parameter list contains exit-specific information. See the exit descriptions following the
parameter list formats.

Note: Some exit subfunctions do not have parameters. ParmBlock is set to null for exit
subfunctions without parameters.

A.6.1.1. Exit Return Codes

Exit handlers return an integer value that signals one of the following actions:

RXEXIT_HANDLED

The exit handler processed the exit subfunction and updated the subfunction parameter list as
required. The Rexx interpreter continues with processing as usual.

RXEXIT_NOT_HANDLED

The exit handler did not process the exit subfunction. The Rexx interpreter processes the
subfunction as if the exit handler were not called.

RXEXIT_RAISE_ERROR

A fatal error occurred in the exit handler. The Rexx interpreter raises Rexx error 48 ("Failure in
system service").

For example, if an application creates an input/output exit handler, one of the following happens:

• When the exit handler returns RXEXIT_NOT_HANDLED for an RXSIOSAY subfunction, the Rexx
interpreter writes the output line to STDOUT.

116

Appendix A. Rexx Application Programming Interfaces

• When the exit handler returns RXEXIT_HANDLED for an RXSIOSAY subfunction, the Rexx
interpreter assumes the exit handler has handled all required output. The interpreter does not write the
output line to STDOUT.

• When the exit handler returns RXEXIT_RAISE_ERROR for an RXSIOSAY subfunction, the
interpreter raises Rexx error 48, "Failure in system service".

A.6.1.2. Exit Parameters

Each exit subfunction has a different parameter list. All RXSTRING exit subfunction parameters are
passed as null-terminated RXSTRINGs. The RXSTRING value can also contain null characters.

For some exit subfunctions, the exit handler can return an RXSTRING character result in the parameter
list. The interpreter provides a default 256-byte RXSTRING for the result string. If the result is longer
than 256 bytes, a new RXSTRING can be allocated usingGlobalAlloc(size). The Rexx interpreter
returns the RXSTRING storage for the exit handler.

A.6.1.3. Identifying Exit Handlers to Rexx

System exit handlers must be registered with RexxRegisterExitDll or RexxRegisterExitExe. The system
exit handler registration is similar to the subcommand handler registration.

The Rexx system exits are enabled with the RexxStart function parameterExits. Exits is a pointer to an
array of RXSYSEXIT structures. Each RXSYSEXIT structure in the array contains a Rexx exit code and
the address of an ASCII exit handler name. The RXENDLST exit code marks the exit list end.

typedef struct {

PSZ sysexit_name; /* name of exit handler */

LONG sysexit_code; /* system exit function code */

} RXSYSEXIT;

The Rexx interpreter calls the registered exit handler named insysexit_namefor all of thesysexit_code
subfunctions.

A.6.1.3.1. Example

...

{

WORKAREARECORD *user_info[2]; /* saved user information */

RXSYSEXIT exit_list[2]; /* system exit list */

user_info[0] = global_workarea; /* save global work area for */

user_info[1] = NULL; /* re-entrance */

rc = RexxRegisterExitExe("EditInit", /* register exit handler */

&Init_exit, /* located at this address */

user_info); /* save global pointer */

/* set up for RXINI exit */

exit_list[0].sysexit_name = "EditInit";

exit_list[0].sysexit_code = RXINI;

117

Appendix A. Rexx Application Programming Interfaces

exit_list[1].sysexit_code = RXENDLST;

return_code = RexxStart(1, /* one argument */

argv, /* argument array */

"CHANGE.ED", /* Rexx procedure name */

NULL, /* use disk version */

"Editor", /* default address name */

RXCOMMAND, /* calling as a subcommand */

exit_list, /* exit list */

&rc, /* converted return code */

&retstr); /* returned result */

/* process return value */

...

}

LONG APIENTRY Init_exit(

LONG ExitNumber, /* code defining the exit function */

LONG Subfunction, /* code defining the exit subfunction */

PEXIT ParmBlock) /* function dependent control block */

{

WORKAREARECORD *user_info[2]; /* saved user information */

WORKAREARECORD global_workarea; /* application data anchor */

USHORT query_flag; /* flag for handler query */

rc = RexxQueryExit("EditInit", /* retrieve application work */

NULL, /* area anchor from Rexx */

&query_flag,

user_info);

global_workarea = user_info[0]; /* set the global anchor */

if (global_workarea->rexx_trace) /* trace at start? */

/* turn on macro tracing */

RexxSetTrace(global_workarea->rexx_pid, global_workarea->rexx_tid);

return RXEXIT_HANDLED; /* successfully handled */

}

A.6.2. System Exit Definitions
The Rexx interpreter supports the following system exits:

RXFNC

External function call exit.

RXFNCCAL

Call an external function.

118

Appendix A. Rexx Application Programming Interfaces

RXCMD

Subcommand call exit.

RXCMDHST

Call a subcommand handler.

RXMSQ

External data queue exit.

RXMSQPLL

Pull a line from the external data queue.

RXMSQPSH

Place a line in the external data queue.

RXMSQSIZ

Return the number of lines in the external data queue.

RXMSQNAM

Set the active external data queue name.

RXSIO

Standard input and output exit.

RXSIOSAY

Write a line to the standard output stream for the SAY instruction.

RXSIOTRC

Write a line to the standard error stream for the Rexx trace or Rexx error messages.

RXSIOTRD

Read a line from the standard input stream for PULL or PARSE PULL.

RXSIODTR

Read a line from the standard input stream for interactive debugging.

RXHLT

Halt processing exit.

RXHLTTST

Test for a HALT condition.

119

Appendix A. Rexx Application Programming Interfaces

RXHLTCLR

Clear a HALT condition.

RXTRC

External trace exit.

RXTRCTST

Test for an external trace event.

RXINI

Initialization exit.

RXINIEXT

Allow additional Rexx procedure initialization.

RXTER

Termination exit.

RXTEREXT

Process Rexx procedure termination.

The following sections describe each exit subfunction, including:

• The service the subfunction provides

• When Rexx calls the exit handler

• The default action when the exit is not provided or the exit handler does not process the subfunction

• The exit action

• The subfunction parameter list

• The state of the variable pool interface during the exit handler call (the variable pool interface is fully
enabled for the RXCMD, RXFNC, RXINI, RXTER, RXHLT, RXCMD, RXFNC, RXSIO, and
RXMSQ exit handler calls.

A.6.2.1. RXFNC

Processes calls to external functions.

Note: The variable pool interface is fully enabled during calls to the RXFNC exit handler.

120

Appendix A. Rexx Application Programming Interfaces

RXFNCCAL

Processes calls to external functions.

• When called: When Rexx calls an external subroutine or function.

• Default action: Call the external routine using the usual external function search order.

• Exit action: Call the external routine, if possible.

• Continuation: If necessary, raise Rexx error 40 ("Incorrect call to routine"), 43 ("Routine not
found"), or 44 ("Function or message did not return data").

• Parameter list:

typedef struct {

struct {

unsigned rxfferr : 1; /* Invalid call to routine. */

unsigned rxffnfnd : 1; /* Function not found. */

unsigned rxffsub : 1; /* Called as a subroutine if */

/* TRUE. Return values are */

/* optional for subroutines, */

/* required for functions. */

} rxfnc_flags ;

PUCHAR rxfnc_name; /* Pointer to function name. */

USHORT rxfnc_namel; /* Length of function name. */

PUCHAR rxfnc_que; /* Current queue name. */

USHORT rxfnc_quel; /* Length of queue name. */

USHORT rxfnc_argc; /* Number of args in list. */

PRXSTRING rxfnc_argv; /* Pointer to argument list. */

/* List mimics argv list for */

/* function calls, an array of */

/* RXSTRINGs. */

RXSTRING rxfnc_retc; /* Return value. */

} RXFNCCAL_PARM;

The name of the external function is defined byrxfnc_nameandrxfnc_namel. The arguments to
the function are inrxfnc_argcandrxfnc_argv. If you call the named external function with the
Rexx CALL instruction (rather than using a function call), the flagrxffsubis TRUE.

The exit handler can setrxfnc_flagsto indicate whether the external function call was successful.
If neitherrxfferr nor rxffnfnd is TRUE, the exit handler successfully called the external function.
The error flags are checked only when the exit handler handles the request.

The exit handler setsrxffnfnd to TRUE when the exit handler cannot locate the external function.
The interpreter raises Rexx error 43, "Routine not found". The exit handler setsrxfferr to TRUE
when the exit handler locates the external function, but the external function returned an error
return code. The Rexx interpreter raises error 40, "Incorrect call to routine."

The exit handler returns the external function result in therxfnc_retcRXSTRING. The Rexx
interpreter raises error 44, "Function or method did not return data," when the external routine is
called as a function and the exit handler does not return a result. When the external routine is
called with the Rexx CALL instruction, a result is not required.

121

Appendix A. Rexx Application Programming Interfaces

A.6.2.2. RXCMD

Processes calls to subcommand handlers.

Note: The variable pool interface function is fully enabled during calls to the RXCMD exit handlers.

RXCMDHST

Calls a named subcommand handler.

• When called: When Rexx procedure issues a command.

• Default action: Call the named subcommand handler specified by the current Rexx ADDRESS
setting.

• Exit action: Process the call to a named subcommand handler.

• Continuation: Raise the ERROR or FAILURE condition when indicated by the parameter list
flags.

• Parameter list:

typedef struct {

struct { /* Condition flags */

unsigned rxfcfail : 1; /* Command failed. Trap with */

/* CALL or SIGNAL on FAILURE. */

unsigned rxfcerr : 1; /* Command ERROR occurred. */

/* Trap with CALL or SIGNAL on */

/* ERROR. */

} rxcmd_flags;

PUCHAR rxcmd_address; /* Pointer to address name. */

USHORT rxcmd_addressl; /* Length of address name. */

PUCHAR rxcmd_dll; /* dll name for command. */

USHORT rxcmd_dll_len; /* Length of dll name. 0 ==> */

/* executable file. */

RXSTRING rxcmd_command; /* The command string. */

RXSTRING rxcmd_retc; /* Pointer to return code */

/* buffer. User allocated. */

} RXCMDHST_PARM;

Therxcmd_commandfield contains the issued command.Rxcmd_address, rxcmd_addressl,
rxcmd_dll, andrxcmd_dll_lenfully define the current ADDRESS setting.Rxcmd_retcis an
RXSTRING for the return code value assigned to Rexx special variable RC.

The exit handler can setrxfcfail or rxfcerr to TRUE to raise an ERROR or FAILURE condition.

A.6.2.3. RXMSQ

External data queue exit.

122

Appendix A. Rexx Application Programming Interfaces

RXMSQPLL

Pulls a line from the external data queue.

• When called: When a Rexx PULL instruction, PARSE PULL instruction, or LINEIN built-in
function reads a line from the external data queue.

• Default action: Remove a line from the current Rexx data queue.

• Exit action: Return a line from the data queue that the exit handler provided.

• Parameter list:

typedef struct {

RXSTRING rxmsq_retc; /* Pointer to dequeued entry */

/* buffer. User allocated. */

} RXMSQPLL_PARM;

The exit handler returns the queue line in therxmsq_retcRXSTRING.

RXMSQPSH

Places a line in the external data queue.

• When called: When a Rexx PUSH instruction, QUEUE instruction, or LINEOUT built-in
function adds a line to the data queue.

• Default action: Add the line to the current Rexx data queue.

• Exit action: Add the line to the data queue that the exit handler provided.

• Parameter list:

typedef struct {

struct { /* Operation flag */

unsigned rxfmlifo : 1; /* Stack entry LIFO when TRUE, */

/* FIFO when FALSE. */

} rxmsq_flags;

RXSTRING rxmsq_value; /* The entry to be pushed. */

} RXMSQPSH_PARM;

Therxmsq_valueRXSTRING contains the line added to the queue. It is the responsibility of the
exit handler to truncate the string if the exit handler data queue has a maximum length restriction.
Rxfmlifois the stacking order (LIFO or FIFO).

RXMSQSIZ

Returns the number of lines in the external data queue.

• When called: When the Rexx QUEUED built-in function requests the size of the external data
queue.

• Default action: Request the size of the current Rexx data queue.

• Exit action: Return the size of the data queue that the exit handler provided.

123

Appendix A. Rexx Application Programming Interfaces

• Parameter list:

typedef struct {

ULONG rxmsq_size; /* Number of Lines in Queue */

} RXMSQSIZ_PARM;

The exit handler returns the number of queue lines inrxmsq_size.

RXMSQNAM

Sets the name of the active external data queue.

• When called: Called by the RXQUEUE("SET",newname) built-in function.

• Default action: Change the current default queue tonewname.

• Exit action: Change the default queue name for the data queue that the exit handler provided.

• Parameter list:

typedef struct {

RXSTRING rxmsq_name; /* RXSTRING containing */

/* queue name. */

} RXMSQNAM_PARM;

rxmsq_namecontains the new queue name.

A.6.2.4. RXSIO

Standard input and output.

Note: The PARSE LINEIN instruction and the LINEIN, LINEOUT, LINES, CHARIN, CHAROUT, and
CHARS built-in functions do not call the RXSIO exit handler.

RXSIOSAY

Writes a line to the standard output stream.

• When called: When the SAY instruction writes a line to the standard output stream.

• Default action: Write a line to the standard output stream (STDOUT).

• Exit action: Write a line to the output stream that the exit handler provided.

• Parameter list:

typedef struct {

RXSTRING rxsio_string; /* String to display. */

} RXSIOSAY_PARM;

124

Appendix A. Rexx Application Programming Interfaces

The output line is contained inrxsio_string. The output line can be of any length. It is the
responsibility of the exit handler to truncate or split the line if necessary.

RXSIOTRC

Writes trace and error message output to the standard error stream.

• When called: To output lines of trace output and Rexx error messages.

• Default action: Write a line to the standard error stream (.ERROR).

• Exit action: Write a line to the error output stream that the exit handler provided.

• Parameter list:

typedef struct {

RXSTRING rxsio_string; /* Trace line to display. */

} RXSIOTRC_PARM;

The output line is contained inrxsio_string. The output line can be of any length. It is the
responsibility of the exit handler to truncate or split the line if necessary.

RXSIOTRD

Reads from standard input stream.

• When called: To read from the standard input stream for the Rexx PULL and PARSE PULL
instructions.

• Default action: Read a line from the standard input stream (STDIN).

• Exit action: Return a line from the standard input stream that the exit handler provided.

• Parameter list:

typedef struct {

RXSTRING rxsiotrd_retc; /* RXSTRING for output. */

} RXSIOTRD_PARM;

The input stream line is returned in therxsiotrd_retcRXSTRING.

RXSIODTR

Interactive debug input.

• When called: To read from the debug input stream for interactive debug prompts.

• Default action: Read a line from the standard input stream (STDIN).

• Exit action: Return a line from the standard debug stream that the exit handler provided.

• Parameter list:

typedef struct {

RXSTRING rxsiodtr_retc; /* RXSTRING for output. */

125

Appendix A. Rexx Application Programming Interfaces

} RXSIODTR_PARM;

The input stream line is returned in therxsiodtr_retcRXSTRING.

A.6.2.5. RXHLT

HALT condition processing.

Because the RXHLT exit handler is called after every Rexx instruction, enabling this exit slows Rexx
program execution. The RexxSetHalt function can halt a Rexx program without between-instruction
polling.

RXHLTTST

Tests the HALT indicator.

• When called: When the interpreter polls externally raises HALT conditions. The exit will be
called after completion of every Rexx instruction.

• Default action: The interpreter uses the system facilities for trapping Cntrl-Break signals.

• Exit action: Return the current state of the HALT condition (either TRUE or FALSE).

• Continuation: Raise the Rexx HALT condition if the exit handler returns TRUE.

• Parameter list:

typedef struct {

struct { /* Halt flag */

unsigned rxfhhalt : 1; /* Set if HALT occurred. */

} rxhlt_flags;

} RXHLTTST_PARM;

If the exit handler setsrxfhhalt to TRUE, the HALT condition is raised in the Rexx program.

The Rexx program can retrieve the reason string using the CONDITION("D") built-in function.

RXHLTCLR

Clears the HALT condition.

• When called: When the interpreter has recognized and raised a HALT condition, to acknowledge
processing of the HALT condition.

• Default action: The interpreter resets the Cntrl-Break signal handlers.

• Exit action: Reset exit handler HALT state to FALSE.

• Parameters: None.

126

Appendix A. Rexx Application Programming Interfaces

A.6.2.6. RXTRC

Tests the external trace indicator.

Note: Because the RXTRC exit is called after every Rexx instruction, enabling this exit slows Rexx
procedure execution. The RexxSetTrace function can turn on Rexx tracing without the
between-instruction polling.

RXTRCTST

Tests the external trace indicator.

• When called: When the interpreter polls for an external trace event. The exit is called after
completion of every Rexx instruction.

• Default action: None.

• Exit action: Return the current state of external tracing (either TRUE or FALSE).

• Continuation: When the exit handler switches from FALSE to TRUE, the Rexx interpreter enters
the interactive Rexx debug mode using TRACE ?R level of tracing. When the exit handler
switches from TRUE to FALSE, the Rexx interpreter exits the interactive debug mode.

• Parameter list:

typedef struct {

struct {

unsigned rxftrace : 1; /* External trace setting */

} rxtrc_flags;

} RXTRCTST_PARM;

If the exit handler switchesrxftraceto TRUE, Rexx switches on the interactive debug mode. If
the exit handler switchesrxftraceto FALSE, Rexx switches off the interactive debug mode.

A.6.2.7. RXINI

Initialization processing. This exit is called as the last step of Rexx program initialization.

Note: The variable pool interface is fully enabled for this exit.

RXINIEXT

Initialization exit.

• When called: Before the first instruction of the Rexx procedure is interpreted.

• Default action: None.

• Exit action: The exit handler can perform additional initialization. For example:

127

Appendix A. Rexx Application Programming Interfaces

• Use RexxVariablePool to initialize application-specific variables.

• Use RexxSetTrace to switch on the interactive Rexx debug mode.

• Parameters: None.

A.6.2.8. RXTER

Termination processing.

The RXTER exit is called as the first step of Rexx program termination.

Note: The variable pool interface is fully enabled for this exit.

RXTEREXT

Termination exit.

• When called: After the last instruction of the Rexx procedure has been interpreted.

• Default action: None.

• Exit action: The exit handler can perform additional termination activities. For example, the exit
handler can use RexxVariablePool to retrieve the Rexx variable values.

• Parameters: None.

A.6.3. System Exit Interface Functions
The system exit functions are similar to the subcommand handler functions. The system exit functions
are:

A.6.3.1. RexxRegisterExitDll

RexxRegisterExitDll registers an exit handler that resides in a dynamic-link library routine.

retc = RexxRegisterExitDll(ExitName, ModuleName, EntryPoint,

UserArea, DropAuth);

A.6.3.1.1. Parameters

ExitName (PSZ) - input

is the address of an ASCII exit handler name.

128

Appendix A. Rexx Application Programming Interfaces

ModuleName (PSZ) - input

is the address of an ASCII dynamic-link library name.ModuleNameis the DLL file containing the
exit handler routine.

EntryPoint (PSZ) - input

is the address of an ASCII dynamic-link procedure name.EntryPointis the routine within
ModuleNamethat Rexx calls as an exit handler.

UserArea (PUCHAR) - input

is the address of an 8-byte area of user-defined information. The 8 bytesUserAreaaddresses are
saved with the exit handler registration.UserAreacan be null if there is no user information to be
saved. The RexxQueryExit function can retrieve the saved user information.

DropAuth (ULONG) - input

is the drop authority.DropAuthidentifies the processes that can deregister the exit handler. Possible
DropAuthvalues are:

RXEXIT_DROPPABLE

Any process can deregister the exit handler with RexxDeregisterExit.

RXEXIT_NONDROP

Only a thread within the same process as the thread that registered the handler can deregister
the handler with RexxDeregisterExit.

A.6.3.1.2. Return Codes

RXEXIT_OK 0 The system exit function executed successfully.

RXEXIT_DUP 10 A duplicate handler name has been successfully
registered. There is either an executable handler
with the same name registered in another process,
or a DLL handler with the same name registered in
another DLL. (To address this exit handler, you
must specify its library name.)

RXEXIT_NOEMEM 1002 There is insufficient memory available to complete
this request.

A.6.3.1.3. Remarks

EntryPointcan be only a 32-bit routine.

129

Appendix A. Rexx Application Programming Interfaces

A.6.3.2. RexxRegisterExitExe

RexxRegisterExitExe registers an exit handler that resides within the application code.

retc = RexxRegisterExitExe(ExitName, EntryPoint, UserArea);

A.6.3.2.1. Parameters

ExitName (PSZ) - input

is the address of an ASCII exit handler name.

EntryPoint (PFN) - input

is the address of the exit handler entry point within the application executable file.

UserArea (PUCHAR) - input

is the address of an 8-byte area of user-defined information. The 8 bytesUserAreaaddresses are
saved with the exit handler registration.UserAreacan be null if there is no user information to be
saved. The RexxQueryExit function can retrieve the user information.

A.6.3.2.2. Return Codes

RXEXIT_OK 0 The system exit function executed successfully.

RXEXIT_DUP 10 A duplicate handler name has been successfully
registered. There is either an executable handler
with the same name registered in another process,
or a DLL handler with the same name registered in
another DLL. (To address this exit handler, you
must specify its library name.)

RXEXIT_NOTREG 30 Registration was unsuccessful due to duplicate
handler and DLL names (RexxRegisterExitExe or
RexxRegisterExitDll); the exit handler is not
registered (other Rexx exit handler functions).

RXEXIT_NOEMEM 1002 There is insufficient memory available to complete
this request.

A.6.3.2.3. Remarks

If ExitNamehas the same name as a handler registered with RexxRegisterExitDll, RexxRegisterExitExe
returns RXEXIT_DUP, which means that the new exit handler has been properly registered.

A.6.3.2.4. Example

WORKAREARECORD *user_info[2]; /* saved user information */

130

Appendix A. Rexx Application Programming Interfaces

user_info[0] = global_workarea; /* save global work area for */

user_info[1] = NULL; /* re-entrance */

rc = RexxRegisterExitExe("IO_Exit", /* register editor handler */

&Edit_IO_Exit, /* located at this address */

user_info); /* save global pointer */

A.6.3.3. RexxDeregisterExit

RexxDeregisterExit deregisters an exit handler.

retc = RexxDeregisterExit(ExitName, ModuleName);

A.6.3.3.1. Parameters

ExitName (PSZ) - input

is the address of an ASCII exit handler name.

ModuleName (PSZ) - input

is the address of an ASCII dynamic-link library name.ModuleNamerestricts the query to an exit
handler within theModuleNamedynamic-link library. WhenModuleNameis null,
RexxDeregisterExit searches the RexxRegisterExitExe exit handler list for a handler within the
current process. If RexxDeregisterExit does not find a RexxRegisterExitExe handler, it searches the
RexxRegisterExitDll exit handler list.

A.6.3.3.2. Return Codes

RXEXIT_OK 0 The system exit function executed successfully.

RXEXIT_NOTREG 30 Registration was unsuccessful due to duplicate
handler and DLL names (RexxRegisterExitExe or
RexxRegisterExitDll); the exit handler is not
registered (other Rexx exit handler functions).

RXEXIT_NOCANDROP 40 The exit handler has been registered as "not
droppable."

A.6.3.3.3. Remarks

The handler is removed from the exit handler list.

131

Appendix A. Rexx Application Programming Interfaces

A.6.3.4. RexxQueryExit

RexxQueryExit queries an exit handler and retrieves saved user information.

retc = RexxQueryExit(ExitName, ModuleName, Flag, UserWord);

A.6.3.4.1. Parameters

ExitName (PSZ) - input

is the address of an ASCII exit handler name.

ModuleName (PSZ) - input

restricts the query to an exit handler within theModuleNamedynamic-link library. When
ModuleNameis null, RexxQueryExit searches the RexxRegisterExitExe exit handler list for a
handler within the current process. If RexxQueryExit does not find a RexxRegisterExitExe handler,
it searches the RexxRegisterExitDll exit handler list.

Flag (PUSHORT) - output

is theExitNameexit handler registration status. When RexxQueryExit returns RXEXIT_OK, the
ExitNameexit handler is currently registered. When RexxQueryExit returns RXEXIT_NOTREG,
theExitNameexit handler is not registered.

UserWord (PUCHAR) - output

is the address of an 8-byte area to receive the user information saved with RexxRegisterExitExe or
RexxRegisterExitDll.UserWordcan be null if the saved user information is not required.

A.6.3.4.2. Return Codes

RXEXIT_OK 0 The system exit function executed successfully.

RXEXIT_NOTREG 30 Registration was unsuccessful due to duplicate
handler and DLL names (RexxRegisterExitExe or
RexxRegisterExitDll); the exit handler is not
registered (other Rexx exit handler functions).

A.6.3.4.3. Example

ULONG APIENTRY Edit_IO_Exit(

PRXSTRING Command, /* Command string passed from the caller */

PUSHORT Flags, /* pointer too short for return of flags */

PRXSTRING Retstr) /* pointer to RXSTRING for RC return */

{

WORKAREARECORD *user_info[2]; /* saved user information */

WORKAREARECORD global_workarea; /* application data anchor */

USHORT query_flag; /* flag for handler query */

132

Appendix A. Rexx Application Programming Interfaces

rc = RexxQueryExit("IO_Exit", /* retrieve application work */

NULL, /* area anchor from Rexx. */

&query_flag,

user_info);

global_workarea = user_info[0]; /* set the global anchor */

...

}

A.7. Variable Pool Interface
Application programs can use the Rexx Variable Pool Interface to manipulate the variables of a currently
active Rexx procedure.

A.7.1. Interface Types
Three of the Variable Pool Interface functions (set, fetch, and drop) have dual interfaces.

A.7.1.1. Symbolic Interface

The symbolic interface uses normal Rexx variable rules when interpreting variables. Variable names are
valid Rexx symbols (in mixed case if desired) including compound symbols. Compound symbols are
referenced with tail substitution. The functions that use the symbolic interface are RXSHV_SYSET,
RXSHV_SYFET, and RXSHV_SYDRO.

A.7.1.2. Direct Interface

The direct interface uses no substitution or case translation. Simple symbols must be valid Rexx variable
names. A valid Rexx variable name:

• Does not begin with a digit or period.

• Contains only uppercase A to Z, the digits 0 - 9, or the characters _, ! or ? before the first period of the
name.

• Can contain any characters after the first period of the name.

Compound variables are specified using the derived name of the variable. Any characters (including
blanks) can appear after the first period of the name. No additional variable substitution is used.
RXSHV_SET, RXSHV_FETCH, and RXSHV_DROP use the direct interface.

133

Appendix A. Rexx Application Programming Interfaces

A.7.2. RexxVariablePool Restrictions
Only the main thread of an application can access the Rexx variable pool. Applications can create and
use new threads, but only the original thread that called RexxStart can use RexxVariablePool.

Executable Windows modules called from a Rexx procedure execute in a new process. Because the
modules do not use the same process and thread as the Rexx procedure, the modules cannot use
RexxVariablePool to access Rexx variables. You can use RexxVariablePool from subcommand handlers,
external functions, and exit handlers.

A.7.3. RexxVariablePool Interface Function
Rexx procedure variables are accessed using the RexxVariablePool function.

A.7.3.1. RexxVariablePool

RexxVariablePool accesses variables of a currently active Rexx procedure.

retc = RexxVariablePool(RequestBlockList);

A.7.3.1.1. Parameters

RequestBlockList (PSHVBLOCK) - input

is a linked list of shared variable request blocks (SHVBLOCK). Each block is a separate variable
access request.

The SHVBLOCK has the following form:

typedef struct shvnode {

struct shvnode *shvnext;

RXSTRING shvname;

RXSTRING shvvalue;

ULONG shvnamelen;

ULONG shvvaluelen;

UCHAR shvcode;

UCHAR shvret;

} SHVBLOCK;

where:

shvnext

is the address of the next SHVBLOCK in the request list.shvnextis null for the last request block.

shvname

is an RXSTRING containing a Rexx variable name.shvnameusage varies with the SHVBLOCK
request code:

134

Appendix A. Rexx Application Programming Interfaces

RXSHV_SET
RXSHV_SYSET
RXSHV_FETCH
RXSHV_SYFET
RXSHV_DROPV
RXSHV_SYDRO
RXSHV_PRIV

shvnameis an RXSTRING pointing to the name of the Rexx variable that the shared variable
request block accesses.

RXSHV_NEXTV

shvnameis an RXSTRING defining an area of storage to receive the name of the next variable.
shvnamelenis the length of the RXSTRING area. If the variable name is longer than the
shvnamelencharacters, the name is truncated and the RXSHV_TRUNC bit ofshvretis set. On
return,shvname.strlengthcontains the length of the variable name;shvnamelenremains
unchanged.

If shvnameis an empty RXSTRING (strptr is null), the Rexx interpreter allocates and returns
an RXSTRING to hold the variable name. If the Rexx interpreter allocates the RXSTRING, an
RXSHV_TRUNC condition cannot occur. However, RXSHV_MEMFL errors are possible for
these operations. If an RXSHV_MEMFL condition occurs, memory is not allocated for that
request block. The RexxVariablePool caller must release the storage withGlobalFree(ptr).

Note: The RexxVariablePool does not add a terminating null character to the variable
name.

shvvalue

An RXSTRING containing a Rexx variable value. The meaning ofshvvaluevaries with the
SHVBLOCK request code:

RXSHV_SET
RXSHV_SYSET

shvvalueis the value assigned to the Rexx variable inshvname. shvvaluelencontains the length
of the variable value.

RXSHV_FETCH
RXSHV_SYFET
RXSHV_PRIV
RXSHV_NEXT

shvvalueis a buffer that is used by the Rexx interpreter to return the value of the Rexx variable
shvname. shvvaluelencontains the length of the value buffer. On return,shvvalue.strlengthis
set to the length of the returned value butshvvaluelenremains unchanged. If the variable value

135

Appendix A. Rexx Application Programming Interfaces

is longer than theshvvaluelencharacters, the value is truncated and the RXSHV_TRUNC bit
of shvretis set. On return,shvvalue.strlengthis set to the length of the returned value;
shvvaluelenremains unchanged.

If shvvalueis an empty RXSTRING (strptr is null), the Rexx interpreter allocates and returns
an RXSTRING to hold the variable value. If the Rexx interpreter allocates the RXSTRING, an
RXSHV_TRUNC condition cannot occur. However, RXSHV_MEMFL errors are possible for
these operations. If an RXSHV_MEMFL condition occurs, memory is not allocated for that
request block. The RexxVariablePool caller must release the storage withGlobalFree(ptr).

Note: The RexxVariablePool does not add a terminating null character to the variable
value.

RXSHV_DROPV
RXSHV_SYDRO

shvvalueis not used.

shvcode

The shared variable block request code. Valid request codes are:

RXSHV_SET
RXSHV_SYSET

Assign a new value to a Rexx procedure variable.

RXSHV_FETCH
RXSHV_SYFET

Retrieve the value of a Rexx procedure variable.

RXSHV_DROPV
RXSHV_SYDRO

Drop (unassign) a Rexx procedure variable.

RXSHV_PRIV

Fetch the private information of the Rexx procedure. The following information items can be
retrieved by name:

PARM

The number of arguments supplied to the Rexx procedure. The number is formatted as a
character string.

136

Appendix A. Rexx Application Programming Interfaces

PARM.n

The nth argument string to the Rexx procedure. If the nth argument was not supplied to
the procedure (either omitted or fewer than n parameters were specified), a null string is
returned.

QUENAME

The current Rexx data queue name.

SOURCE

The Rexx procedure source string used for the PARSE SOURCE instruction.

VERSION

The Rexx interpreter version string used for the PARSE SOURCE instruction.

RXSHV_NEXTV

Fetch the next variable, excluding variables hidden by PROCEDURE instructions. The
variables are not returned in any specified order.

The Rexx interpreter maintains an internal pointer to its list of variables. The variable pointer is
reset to the first Rexx variable whenever:

• An external program returns control to the interpreter

• A set, fetch, or drop RexxVariablePool function is used

RXSHV_NEXTV returns both the name and the value of Rexx variables until the end of the
variable list is reached. If no Rexx variables are left to return, RexxVariablePool sets the
RXSHV_LVAR bit in shvret.

shvret

The individual shared variable request return code.shvretis a 1-byte field of status flags for the
individual shared variable request. Theshvretfields for all request blocks in the list are ORed
together to form the RexxVariablePool return code. The individual status conditions are:

RXSHV_OK

The request was processed without error (all flag bits are FALSE).

RXSHV_NEWV

The named variable was uninitialized at the time of the call.

RXSHV_LVAR

No more variables are available for an RXSHV_NEXTV operation.

137

Appendix A. Rexx Application Programming Interfaces

RXSHV_TRUNC

A variable value or variable name was truncated because the supplied RXSTRING was too
small for the copied value.

RXSHV_BADN

The variable name specified inshvnamewas invalid for the requested operation.

RXSHV_MEMFL

The Rexx interpreter was unable to obtain the storage required to complete the request.

RXSHV_BADF

The shared variable request block contains an invalid function code.

The Rexx interpreter processes each request block in the order provided. RexxVariablePool returns to the
caller after the last block is processed or a severe error occurred (such as an out-of-memory condition).

The RexxVariablePool function return code is a composite return code for the entire set of shared
variable requests. The return codes for all of the individual requests are ORed together to form the
composite return code. Individual shared variable request return codes are returned in the shared variable
request blocks.

A.7.3.1.2. RexxVariablePool Return Codes

0 to 127

RexxVariablePool has processed the entire shared variable request block list.

The RexxVariablePool function return code is a composite return code for the entire set of shared
variable requests. The low-order 6 bits of theshvretfields for all request blocks are ORed together
to form the composite return code. Individual shared variable request status flags are returned in the
shared variable request blockshvretfield.

RXSHV_NOAVL

The variable pool interface was not enabled when the call was issued.

A.7.3.1.3. Example

/***/

/* */

/* SetRexxVariable - Set the value of a Rexx variable */

/* */

/***/

INT SetRexxVariable(

PSZ name, /* Rexx variable to set */

PSZ value) /* value to assign */

138

Appendix A. Rexx Application Programming Interfaces

{

SHVBLOCK block; /* variable pool control block*/

block.shvcode = RXSHV_SYSET; /* do a symbolic set operation*/

block.shvret=(UCHAR)0; /* clear return code field */

block.shvnext=(PSHVBLOCK)0; /* no next block */

/* set variable name string */

MAKERXSTRING(block.shvname, name, strlen(name));

/* set value string */

MAKERXSTRING(block.shvvalue, value, strlen(value));

block.shvvaluelen=strlen(value); /* set value length */

return RexxVariablePool(&block); /* set the variable */

}

A.8. Dynamically Allocating and De-allocating Memory
For several functions of the Rexx-API it is necessary or possible to dynamically allocate or free memory.
Depending on the operating system, compiler and REXX interpreter, the method for these allocations
and de- allocations vary. To write system independent code, Object REXX comes with two new API
function calls called RexxAllocateMemory() and RexxFreeMemory(). These functions are wrapper for
the corresponding compiler or operating system memory functions.

A.8.1. The RexxAllocateMemory() Function

PVOID APIENTRY RexxAllocateMemory(ULONG size);

where:

size

is the number of bytes of requested memory.

Return Codes

Returns a pointer to the newly allocated block of memory, or NULL if no memory could be allocated.

A.8.2. The RexxFreeMemory() Function

APIRET APIENTRY RexxFreeMemory(PVOID MemoryBlock);

where:

139

Appendix A. Rexx Application Programming Interfaces

MemoryBlock

is a void pointer to the block of memory allocated by the Object REXX interpreter, or allocated by a
previous call to RexxAllocateMemory().

Return Codes

RexxFreeMemory() always returns 0.

A.9. Queue Interface
Application programs can use the Rexx Queue Interface to establish and manipulate named queues.
Named queues prevent different Rexx programs that are running in a single session from interfering with
each other. Named queues also allow Rexx programs running in different sessions to synchronize
execution and pass data. These queuing services are entirely separate from the Windows InterProcess
Communications queues.

A.9.1. Queue Interface Functions
The following sections explain the functions for creating and using named queues.

A.9.1.1. RexxCreateQueue

RexxCreateQueue creates a new (empty) queue.

retc = RexxCreateQueue(Buffer, BuffLen, RequestedName, DupFlag);

A.9.1.1.1. Parameters

Buffer (PSZ) - input

is the address of the buffer where the ASCII name of the created queue is returned.

BuffLen (ULONG) - input

is the size of the buffer.

RequestedName (PSZ) - input

is the address of an ASCII queue name. If no queue of that name exists, a queue is created with the
requested name. If the name already exists, a queue is created, but Rexx assigns an arbitrary name
to it. In addition, the DupFlag is set. The maximum length for a queue name is 1024 characters.

When RequestedName is null, Rexx provides a name for the created queue.

In all cases, the actual queue name is passed back to the caller.

140

Appendix A. Rexx Application Programming Interfaces

DupFlag (PULONG) - output

is the duplicate name indicator. This flag is set when the requested name already exists.

A.9.1.1.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_STORAGE 1 The name buffer is not large enough for the queue
name.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to create
or delete a queue named SESSION.

A.9.1.1.3. Remarks

Queue names must conform to the same syntax rules as Rexx variable names. Lowercase characters in
queue names are translated to uppercase.

The queue name must be a valid Rexx symbol. However, there is no connection between queue names
and variable names. A program can have a variable and a queue with the same name.

A.9.1.2. RexxDeleteQueue

RexxDeleteQueue deletes a queue.

retc = RexxDeleteQueue(QueueName);

A.9.1.2.1. Parameters

QueueName (PSZ) - input

is the address of the ASCII name of the queue to be deleted.

A.9.1.2.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to create
or delete a queue named SESSION.

RXQUEUE_NOTREG 9 The queue does not exist.

RXQUEUE_ACCESS 10 The queue cannot be deleted because it is busy.

141

Appendix A. Rexx Application Programming Interfaces

A.9.1.2.3. Remarks

If a queue is busy (for example, wait is active), it is not deleted.

A.9.1.3. RexxQueryQueue

RexxQueryQueue returns the number of entries remaining in the named queue.

retc = RexxQueryQueue(QueueName, Count);

A.9.1.3.1. Parameters

QueueName (PSZ) - input

is the address of the ASCII name of the queue to be queried.

Count (PULONG) - output

is the number of entries in the queue.

A.9.1.3.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to create
or delete a queue named SESSION.

RXQUEUE_NOTREG 9 The queue does not exist.

A.9.1.4. RexxAddQueue

RexxAddQueue adds an entry to a queue.

retc = RexxAddQueue(QueueName, EntryData, AddFlag);

A.9.1.4.1. Parameters

QueueName (PSZ) - input

is the address of the ASCII name of the queue to which data is to be added.

EntryData (PRXSTRING) - input

is the address of an RXSTRING containing the data to be added to the queue.

142

Appendix A. Rexx Application Programming Interfaces

AddFlag (ULONG) - input

is the LIFO/FIFO flag. When AddFlag isRXQUEUE_LIFO, data is added LIFO (Last In, First Out) to
the queue. When AddFlag isRXQUEUE_FIFO, data is added FIFO (First In, First Out).

A.9.1.4.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to create
or delete a queue named SESSION.

RXQUEUE_PRIORITY 6 The order flag is not equal to RXQUEUE_LIFO or
RXQUEUE_FIFO.

RXQUEUE_NOTREG 9 The queue does not exist.

RXQUEUE_MEMFAIL 12 There is insufficient memory available to complete
the request.

A.9.1.5. RexxPullQueue

RexxPullQueue removes the top entry from the queue and returns it to the caller.

retc = RexxPullQueue(QueueName, DataBuf, DateTime, WaitFlag);

A.9.1.5.1. Parameters

QueueName (PSZ) - input

is the address of the ASCII name of the queue from which data is to be pulled.

DataBuf (PRXSTRING) - output

is the address of an RXSTRING for the returned value.

DateTime (PDATETIME) - output

is the address of the entry’s date and time stamp.

WaitFlag (ULONG) - input

is the wait flag. When WaitFlag isRXQUEUE_NOWAIT and the queue is empty, RXQUEUE_EMPTY is
returned. Otherwise, when WaitFlag isRXQUEUE_WAIT, Rexx waits until a queue entry is available
and returns that entry to the caller.

A.9.1.5.2. Return Codes

143

Appendix A. Rexx Application Programming Interfaces

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to create
or delete a queue named SESSION.

RXQUEUE_BADWAITFLAG 7 The wait flag is not equal to RXQUEUE_WAIT or
RXQUEUE_NOWAIT.

RXQUEUE_EMPTY 8 Attempted to pull the item off the queue but it was
empty.

RXQUEUE_NOTREG 9 The queue does not exist.

RXQUEUE_MEMFAIL 12 There is insufficient memory available to complete
the request.

A.9.1.5.3. Remarks

The caller is responsible for freeing the returned memory that DataBuf points to.

A.10. Halt and Trace Interface
The halt and trace functions raise a Rexx HALT condition or change the Rexx interactive debug mode
while a Rexx procedure is running. You might prefer these interfaces to the RXHLT and RXTRC system
exits. The system exits require an additional call to an exit routine after each Rexx instruction completes,
possibly causing a noticeable performance degradation. The Halt and Trace functions, on the contrary,
are a single request to change the halt or trace state and do not degrade the Rexx procedure performance.

A.10.1. Halt and Trace Interface Functions
The Halt and Trace functions are:

A.10.1.1. RexxSetHalt

RexxSetHalt raises a HALT condition in a running Rexx program.

retc = RexxSetHalt(ProcessId, ThreadId);

A.10.1.1.1. Parameters

ProcessId (PID) - input

is the process ID of the target Rexx procedure.ProcessIdis the application process that called the
RexxStart function.

144

Appendix A. Rexx Application Programming Interfaces

ThreadId (TID) - input

is the thread ID of the target Rexx procedure.ThreadIdis the application thread that called the
RexxStart function. IfThreadId=0, all the threads of the process are canceled.

A.10.1.1.2. Return Codes

RXARI_OK 0 The function completed successfully.

RXARI_NOT_FOUND 1 The target Rexx procedure was not found.

RXARI_PROCESSING_ERROR 2 A failure in Rexx processing occurred.

A.10.1.1.3. Remarks

This call is not processed if the target Rexx program is running with the RXHLT exit enabled.

A.10.1.2. RexxSetTrace

RexxSetTrace turns on the interactive debug mode for a Rexx procedure.

retc = RexxSetTrace(ProcessId, ThreadId);

A.10.1.2.1. Parameters

ProcessId (PID) - input

is the process ID of the target Rexx procedure.ProcessIdis the application process that called the
RexxStart function.

ThreadId (TID) - input

is the thread ID of the target Rexx procedure.ThreadIdis the application thread that called the
RexxStart function. IfThreadId=0, all the threads of the process are traced.

A.10.1.2.2. Return Codes

RXARI_OK 0 The function completed successfully.

RXARI_NOT_FOUND 1 The target Rexx procedure was not found.

RXARI_PROCESSING_ERROR 2 A failure in Rexx processing occurred.

A.10.1.2.3. Remarks

A RexxSetTrace call is not processed if the Rexx procedure is using the RXTRC exit.

145

Appendix A. Rexx Application Programming Interfaces

A.10.1.3. RexxResetTrace

RexxResetTrace turns off the interactive debug mode for a Rexx procedure.

retc = RexxResetTrace(ProcessId,ThreadId);

A.10.1.3.1. Parameters

ProcessId (PID) - input

is the process ID of the target Rexx procedure.ProcessIdis the application process that called the
RexxStart function.

ThreadId (TID) - input

is the thread ID of the target Rexx procedure.ThreadIdis the application thread that called the
RexxStart function. IfThreadId=0, the trace of all threads of the process is reset.

A.10.1.3.2. Return Codes

RXARI_OK 0 The function completed successfully.

RXARI_NOT_FOUND 1 The target Rexx procedure was not found.

RXARI_PROCESSING_ERROR 2 A failure in Rexx processing occurred.

A.10.1.3.3. Remarks

• A RexxResetTrace call is not processed if the Rexx procedure uses the RXTRC exit.

• Interactive debugging is not turned off unless the interactive debug mode was originally started with
RexxSetTrace.

A.11. Macrospace Interface
The macrospace can improve the performance of Rexx procedures by maintaining Rexx procedure
images in memory for immediate load and execution. This is useful for frequently-used procedures and
functions such as editor macros.

Programs registered in the Rexx macrospace are available to all processes. You can run them by using
the RexxStart function or calling them as functions or subroutines from other Rexx procedures.

Procedures in the macrospace are called in the same way as other Rexx external functions. However, the
macrospace Rexx procedures can be placed at the front or at the very end of the external function search
order.

146

Appendix A. Rexx Application Programming Interfaces

Procedures in the macrospace are stored without source code information and therefore cannot be traced.

Rexx procedures in the macrospace can be saved to a disk file. A saved macrospace file can be reloaded
with a single call to RexxLoadMacroSpace. An application, such as an editor, can create its own library
of frequently-used functions and load the entire library into memory for fast access. Several macrospace
libraries can be created and loaded.

Note: The TRACE keyword instruction cannot be used in the Rexx macrospace. Since macrospace
uses the tokenized format, it is not possible to get the source code from macrospace to trace a
function.

A.11.1. Search Order
When RexxAddMacro loads a Rexx procedure into the macrospace, the position in the external function
search order is specified. Possible values are:

RXMACRO_SEARCH_BEFORE

The Rexx interpreter locates a function registered with RXMACRO_SEARCH_BEFORE before
any registered functions or external Rexx files.

RXMACRO_SEARCH_AFTER

The Rexx interpreter locates a function registered with RXMACRO_SEARCH_AFTER after any
registered functions or external Rexx files.

A.11.2. Storage of Macrospace Libraries
The Rexx macrospace is placed in shared memory. Only the amount of memory and swap space
available to the system limits the size of the macrospace. However, as the macrospace grows, it limits the
memory available to other processes in the system. Allowing the macrospace to grow too large can
degrade overall system performance due to increased system swap file access. Try to place only the most
frequently-used functions in the macrospace.

A.11.3. Macrospace Interface Functions
The functions to manipulate macrospaces are:

A.11.3.1. RexxAddMacro

RexxAddMacro loads a Rexx procedure into the macrospace.

retc = RexxAddMacro(FuncName, SourceFile, Position);

A.11.3.1.1. Parameters

147

Appendix A. Rexx Application Programming Interfaces

FuncName (PSZ) - input

is the address of the ASCII function name. Rexx procedures in the macrospace are called using the
assigned function name.

SourceFile (PSZ) - input

is the address of the ASCII file specification for the Rexx procedure source file. When a file
extension is not supplied, .CMD is used. When the full path is not specified, the current directory
and path are searched.

Position (ULONG) - input

is the position in the Rexx external function search order. Possible values are:

RXMACRO_SEARCH_BEFORE

The Rexx interpreter locates the function before any registered functions or external Rexx files.

RXMACRO_SEARCH_AFTER

The Rexx interpreter locates the function after any registered functions or external Rexx files.

A.11.3.1.2. Return Codes

RXMACRO_OK 0 The call to the function completed
successfully.

RXMACRO_NO_STORAGE 1 There was not enough memory to
complete the requested function.

RXMACRO_SOURCE_NOT_FOUND 7 The requested file was not found.

RXMACRO_INVALID_POSITION 8 An invalid search-order position request
flag was used.

A.11.3.2. RexxDropMacro

RexxDropMacro removes a Rexx procedure from the macrospace.

retc = RexxDropMacro(FuncName);

A.11.3.2.1. Parameter

FuncName (PSZ) - input

is the address of the ASCII function name.

148

Appendix A. Rexx Application Programming Interfaces

A.11.3.2.2. Return Codes

RXMACRO_OK 0 The call to the function completed successfully.

RXMACRO_NOT_FOUND 2 The requested function was not found in the
macrospace.

A.11.3.3. RexxClearMacroSpace

RexxClearMacroSpace removes all loaded Rexx procedures from the macrospace.

retc = RexxClearMacroSpace();

A.11.3.3.1. Return Codes

RXMACRO_OK 0 The call to the function completed successfully.

RXMACRO_NOT_FOUND 2 The requested function was not found in the
macrospace.

A.11.3.3.2. Remarks

RexxClearMacroSpace must be used with care. This function removes all functions from the
macrospace, including functions loaded by other processes.

A.11.3.4. RexxSaveMacroSpace

RexxSaveMacroSpace saves all or part of the macrospace Rexx procedures to a disk file.

retc = RexxSaveMacroSpace(FuncCount, FuncNames, MacroLibFile);

A.11.3.4.1. Parameters

FuncCount (ULONG) - input

Number of Rexx procedures to be saved.

FuncNames (PSZ *) - input

is the address of a list of ASCII function names.FuncCountgives the size of the function list.

MacroLibFile (PSZ) - input

is the address of the ASCII macrospace file name. IfMacroLibFilealready exists, it is replaced with
the new file.

149

Appendix A. Rexx Application Programming Interfaces

A.11.3.4.2. Return Codes

RXMACRO_OK 0 The call to the function completed
successfully.

RXMACRO_NOT_FOUND 2 The requested function was not found in
the macrospace.

RXMACRO_EXTENSION_REQUIRED 3 An extension is required for the
macrospace file name.

RXMACRO_FILE_ERROR 5 An error occurred accessing a
macrospace file.

A.11.3.4.3. Remarks

WhenFuncCountis 0 orFuncNamesis null, RexxSaveMacroSpace saves all functions in the
macrospace.

Saved macrospace files can be used only with the same interpreter version that created the images. If
RexxLoadMacroSpace is called to load a saved macrospace and the release level or service level is
incorrect, RexxLoadMacroSpace fails. The Rexx procedures must then be reloaded individually from the
original source programs.

A.11.3.5. RexxLoadMacroSpace

RexxLoadMacroSpace loads all or part of the Rexx procedures from a saved macrospace file.

retc = RexxLoadMacroSpace(FuncCount, FuncNames, MacroLibFile);

A.11.3.5.1. Parameters

FuncCount (ULONG) - input

is the number of Rexx procedures to load from the saved macrospace.

FuncNames (PSZ *) - input

is the address of a list of Rexx function names.FuncCountgives the size of the function list.

MacroLibFile (PSZ) - input

is the address of the saved macrospace file name.

A.11.3.5.2. Return Codes

RXMACRO_OK 0 The call to the function completed
successfully.

150

Appendix A. Rexx Application Programming Interfaces

RXMACRO_NO_STORAGE 1 There was not enough memory to
complete the requested function.

RXMACRO_NOT_FOUND 2 The requested function was not found in
the macrospace.

RXMACRO_ALREADY_EXISTS 4 Duplicate functions cannot be loaded
from a macrospace file.

RXMACRO_FILE_ERROR 5 An error occurred accessing a
macrospace file.

RXMACRO_SIGNATURE_ERROR 6 A macrospace save file does not contain
valid function images.

A.11.3.5.3. Remarks

WhenFuncCountis 0 orFuncNamesis null, RexxLoadMacroSpace loads all Rexx procedures from the
saved file.

If a RexxLoadMacroSpace call replaces an existing macrospace Rexx procedure, the entire load request
is discarded and the macrospace remains unchanged.

A.11.3.6. RexxQueryMacro

RexxQueryMacro searches the macrospace for a specified function.

retc = RexxQueryMacro(FuncName, Position)

A.11.3.6.1. Parameters

FuncName (PSZ) - input

is the address of an ASCII function name.

Position (PUSHORT) - output

is the address of an unsigned short integer flag. If the function is loaded in the macrospace,Position
is set to the search-order position of the current function.

A.11.3.6.2. Return Codes

RXMACRO_OK 0 The call to the function completed successfully.

RXMACRO_NOT_FOUND 2 The requested function was not found in the
macrospace.

151

Appendix A. Rexx Application Programming Interfaces

A.11.3.7. RexxReorderMacro

RexxReorderMacro changes the search order position of a loaded macrospace function.

retc = RexxReorderMacro(FuncName, Position)

A.11.3.7.1. Parameters

FuncName (PSZ) - input

is the address of an ASCII macrospace function name.

Position (ULONG) - input

is the new search-order position of the macrospace function. Possible values are:

RXMACRO_SEARCH_BEFORE

The Rexx interpreter locates the function before any registered functions or external Rexx files.

RXMACRO_SEARCH_AFTER

The Rexx interpreter locates the function after any registered functions or external Rexx files.

A.11.3.7.2. Return Codes

RXMACRO_OK 0 The call to the function completed
successfully.

RXMACRO_NOT_FOUND 2 The requested function was not found in
the macrospace.

RXMACRO_INVALID_POSITION 8 An invalid search-order position request
flag was used.

A.12. Windows Scripting Host Interface
The purpose of this section is to describe any behaviors specific to Object Rexx that the designer of a
Windows Scripting Host (WSH) should be aware of. It is assumed that the reader is already familiar with
how to do that, or has the appropriate documentation at hand. For further information, see "Windows
Scripting Host Engine", inOpen Object Rexx: Reference.

A.12.1. Concurrency
Object Rexx is a multithreaded program. (See Concurrency, inObject Rexx for Windows: Reference.)

152

Appendix A. Rexx Application Programming Interfaces

The closest Windows model is the free-threaded model for dealing with multiple threads. The WSH
controls are typically apartment-threaded. Therefore, since Object Rexx does not restrict its callers to any
particular thread, and it passes on any exterior calls in the thread context in which it was received, then
for all practical purposes it should be treated as an apartment-threaded program.

A.12.2. WSH Features

A.12.2.1. COM Interfaces

There are several interfaces that a WSH engine can use. Object Rexx does not support all of them; some
are supported, but created dynamically. Since the dynamically-supported interfaces will not appear in an
OLE viewer, they are listed here.

The following interfaces are fully supported:

• IUnknown

• IActiveScriptParse

• IActiveScriptError

• IActiveScriptParseProcedure

• IObjectSafety

While Object Rexx has code for all of the methods of an interface that it supports, all methods may not
be implemented. The methods that are not implemented will return E_NOTIMPL.

The following interfaces are supported:

• IDispatch

• GetIDsOfNames

• Invoke

• IDispatchEx

• GetDispID - but does not support dynamic creation of properties or methods.

• InvokeEx - but does not support dynamic creation of properties or methods.

• GetMemberName

• GetNextDispID

• IActiveScript

• SetScriptSite

• GetScriptState

• SetScriptState

• Close

• AddNamedItem

153

Appendix A. Rexx Application Programming Interfaces

• AddTypeLib

• GetScriptDispatch

A.12.2.2. Script Debugging

Object Rexx does not support the WSH Script Debugging facilities. For the best techniques for
debugging an Object Rexx script, refer to the section on the Trace keyword in "Keyword Instructions", in
Open Object Rexx: Reference.

A.12.2.3. DCOM

Object Rexx does not support DCOM.

154

Appendix B. Object Rexx Runtime
Object Rexx Runtime is part of the Open Object Rexx distribution. It is a software package that can be
distributed together with your own Rexx applications so that they can run on your client’s computer. The
precondition for using Object Rexx Runtime is that the Rexx scripts have to be tokenized; for further
information on tokenizing, see "Distributing Programs without Source" below. The Object Rexx
Scripting Engine for Windows Scripting Host (WSH) is not available.

Object Rexx also allows you to create tokenized programs that can be used to protect your program
source code.

Note: The installed version must be of the same version number as the one that created the scripts
(or higher) to be able to run the scripts.

B.1. Distributing Programs without Source
Open Object Rexx comes with a utility called RexxC. You can use this utility to produce versions of your
programs that do not include the original program source. You can use these programs to replace any
Rexx program file that includes the source, with the following restrictions:

1. The SOURCELINE built-in function returns0 for the number of lines in the program and raises an
error for all attempts to retrieve a line.

2. A sourceless program may not be traced. The TRACE instruction runs without error, but no tracing
of instruction lines, expression results, or intermediate expression values occurs.

The syntax of the REXXC utility is:

>>-RexxC--inputfile--+------------+--+------+------------------><

+-outputfile-+ +- -s -+

If you specify theoutputfile, the language processor processes theinputfileand writes the executable
version of the program to theoutputfile. If the outputfilealready exists, it is replaced.

If the language processor detects a syntax error while processing the program, it reports the error and
stops processing without creating a new output file. If you omit theoutputfile, the language processor
performs a syntax check on the program without writing the executable version to a file.

You can use the/s option to suppress the display of the information about the interpreter used.

Note: You can use the in-storage capabilities of the RexxStart programming interface to process the
file image of the output file.

With version 2.1, the tokenized form has changed. All Open Object Rexx for Windows editions contain a
utility called RxMigrate that can be used to change old tokenized forms to the new one. The
recommended procedure is to create a new tokenized file from the original source with the new version

155

Appendix B. Object Rexx Runtime

of Open Object Rexx. However, if the source code is no longer available, RxMigrate can be used to
convert the old tokenized file. The syntax of the RxMigrate utility is:

>>-RxMigrate--inputfile--outputfile----------------------------><

156

Appendix C. Sample Rexx Programs
Rexx supplies the following sample programs as .REX files.

CCREPLY.REX

A concurrent programming example.

This program demonstrates how to use reply to run two methods at the same time.

COMPLEX.REX

A complex number class.

This program demonstrates how to create a complex number class using the ::CLASS and
::METHOD directives. An example of subclassing the complex number class (the Vector subclass)
is also shown. Finally, the Stringlike class demonstrates the use of a mixin to provide to the complex
number class with some string behavior.

DESKICON.REX

A WindowsProgramManager class example.

This sample uses the method AddDesktopIcon of the WindowsProgramManager class to create a
shortcut to a program or an application on the Windows desktop.

DESKTOP.REX

This program demonstrates how you could use the WindowsProgramManager class to manipulate
program groups and program items.

DRIVES.REX

A sample use of the Sys... functions.

This program displays information about drives using the utility functions SysDriveMap,
SysDriveInfo, SysFileSystemType, and SysBootDrive.

EVENTLOG.REX

A sample use of the WindowsEventLog class.

This sample demonstrates how to read from and write to the Windows event log using the methods
of the WindowsEventLog class.

157

Appendix C. Sample Rexx Programs

FACTOR.REX

A factorial program.

This program demonstrates a way to define a factorial class using the subclass method and the
.methods environment symbol.

GREPLY.REX

An example contrasting the GUARDED and UNGUARDED methods.

This program demonstrates the difference between GUARDED and UNGUARDED methods with
respect to their use of the object variable pool.

GUESS.REX

An animal guessing game.

This sample creates a simple node class and uses it to create a logic tree. The logic tree is filled in
by playing a simple guessing game.

KTGUARD.REX

A GUARD instruction example.

This program demonstrates the use of the START method and the GUARD instruction to control the
running of several programs. In this sample, the programs are controlled by one "guarded" variable.

MONTH.REX

An example that displays the days of the month January 1994.

This version demonstrates the use of arrays to replace stems.

OLE\APPS\SAMP01.REX

Starts Internet Explorer and shows the RexxLA homepage. After 10 seconds the RexxLA news
page is displayed.

OLE\APPS\SAMP02.REX

Shows some features of the Windows Scripting Host Shell Object:

• Query environment string

• List special folders

• Create a shortcut on the desktop

158

Appendix C. Sample Rexx Programs

OLE\APPS\SAMP03.REX

Shows some features of the Windows Scripting Host Network object:

• Query computer name, user name

• List network connections for drives and printers

OLE\APPS\SAMP04.REX

Creates a mail message in Lotus Notes® and sends it to a number of recipients automatically.

OLE\APPS\SAMP05.REX

Creates a new document in WordPro 97, enters some text with different attributes, and finally saves
and prints the document.

OLE\APPS\SAMP06.REX

Creates a new document in WordPro 97 with a provided Smartmaster. Fills in some "Click here"
fields with data prompted by the program or queried from the system. Finally the document is saved
to the directory in which this Rexx program is located and is sent to the printer.

OLE\APPS\SAMP07.REX

Creates a new spreadsheet in Lotus 1-2-3® and fills in a table with fictional revenue numbers. The
table also contains a calculated field and different styles. A second sheet is added with a 3D chart
displaying the revenue data.

OLE\APPS\SAMP08.REX

Creates a Microsoft Word document, enters some text, and saves it. The program then loads the
document again and modifies it.

OLE\APPS\SAMP09.REX

Creates a Microsoft Excel sheet, enters some data, and saves it.

OLE\APPS\SAMP10.REX

Uses the Windows Script Host FileSystemObject to obtain information about the drives of the
system.

OLE\APPS\SAMP11.REX

Gets the stock price from the RexxLA internet page with Microsoft Internet Explorer, and stores it
in a Rexx variable.

OLE\APPS\SAMP12.REX

Demonstrates the use of events with Microsoft Internet Explorer:

• Navigate to the RexxLA homepage and disallow the changing of the URL to a page not in that
"address space".

159

Appendix C. Sample Rexx Programs

OLE\APPS\SAMP13.REX

Demonstrates the use of events with Microsoft Internet Explorer:

• Search for the string "Rexx" on the RexxLA Web page, and go randomly to one of the found sites.

OLE\OLEINFO\OLEINFO.REX

This application is a "small" browser for OLE objects.

OLE\ADSI\ADSI1.REX

Retrieves information about a computer with ADSI.

OLE\ADSI\ADSI2.REX

Gets a user’s full name and changes it.

OLE\ADSI\ADSI3.REX

Shows the use of ADSI containers.

OLE\ADSI\ADSI4.REX

Shows the use of filters with ADSI collections.

OLE\ADSI\ADSI5.REX

Displays namespaces and domains.

OLE\ADSI\ADSI6.REX

Enables you to inspect the properties of an object.

OLE\ADSI\ADSI7.REX

Creates a group, and places several users in it.

OLE\ADSI\ADSI8.REX

Removes the users and the group that were created in sample ADSI7.REX.

OLE\METHINFO\MAIN.REX

This application demonstrates the use of the GetKnownMethods method.

OLE\WMI\ACCOUNTS.REX

This is a demo application for displaying all the accounts of the windows system with WMI. It also
shows how to display all the properties of a WMI object in general.

OLE\WMI\SERVICES.REX

This application demonstrates how to list, start, stop, pause, or resume windows services with WMI.

OLE\WMI\PROCESS.REX

This application displays by means of WMI the processes of a windows system that are running.

160

Appendix C. Sample Rexx Programs

OLE\WMI\OSINFO.REX

This sample script uses a Windows Management Instrumentation (WMI) object
("Win32_OperatingSystem") to obtain information about the installed operating system(s).

OLE\WMI\SYSINFO\SYSINFO.REX

This is a demo application for inspecting some system properties using WMI.

PHILFORK.REX

Sample for concurrency with command line output.

PIPE.REX

A pipeline implementation.

This program demonstrates the use of the ::CLASS and ::METHOD directives to create a simple
implementation of a CMS-like pipeline function.

QDATE.REX

An example that types or pushes today’s date and moon phase, in English date format.

QTIME.REX

An example that lays or stacks time in English time format, and also chimes.

REGISTRY.REX

This program demonstrates how you could use the WindowsRegistry class to work with the
Windows registry.

SEMCLS.REX

An Object Rexx semaphore class.

This file implements a semaphore class in Object Rexx.

STACK.REX

A stack class.

This program demonstrates how to implement a stack class using the ::CLASS and ::METHOD
directives. Also included is a short example of the use of a stack.

USECOMP.REX

A simple demonstration of the complex number class.

This program demonstrates the use of the ::REQUIRES directive, using the complex number class
included in the samples.

161

Appendix C. Sample Rexx Programs

USEPIPE.REX

Sample uses of the pipe implementation in PIPE.REX.

This program demonstrates how you could use the pipes implemented in the pipe sample.

162

Appendix D. Notices
Any reference to a non-open source product, program, or service is not intended to state or imply that
only non-open source product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any RexxLA intellectual property right may be used instead.
However, it is the user’s responsibility to evaluate and verify the operation of any non-open source
product, program, or service.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurement may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-open source products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. RexxLA has not tested those products
and cannot confirm the accuracy of performance, compatibility or any other claims related to
non-RexxLA packages. Questions on the capabilities of non-RexxLA packages should be addressed to
the suppliers of those products.

All statements regarding RexxLA’s future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

D.1. Trademarks
The following terms are trademarks of the IBM Corporation in the United States, other countries, or both:

1-2-3
AIX
IBM
Lotus
Microsoft
OS/2
S/390
VisualAge
Windows NT

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the Unites States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

163

Appendix D. Notices

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

D.2. Source Code For This Document
The source code for this document is available under the terms of the Common Public License v1.0
which accompanies this distribution and is available in the appendixCommon Public License Version
1.0. The source code itself is available at
http://sourceforge.net/project/showfiles.php?group_id=119701.

The source code for this document is maintained in DocBook SGML/XML format.

164

Appendix E. Common Public License Version
1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE
PROGRAM CONSTITUTES RECIPIENT’S ACCEPTANCE OF THIS AGREEMENT.

E.1. Definitions
"Contribution" means:

1. in the case of the initial Contributor, the initial code and documentation distributed under this
Agreement, and

2. in the case of each subsequent Contributor:

a.changes to the Program, and

b. additions to the Program;

where such changes and/or additions to the Program originate from and are distributed by that particular
Contributor. A Contribution ’originates’ from a Contributor if it was added to the Program by such
Contributor itself or anyone acting on such Contributor’s behalf. Contributions do not include additions
to the Program which: (i) are separate modules of software distributed in conjunction with the Program
under their own license agreement, and (ii) are not derivative works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are necessarily infringed by
the use or sale of its Contribution alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this Agreement.

"Recipient" means anyone who receives the Program under this Agreement, including all Contributors.

E.2. Grant of Rights

1. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free copyright license to reproduce, prepare derivative works of, publicly
display, publicly perform, distribute and sublicense the Contribution of such Contributor, if any, and
such derivative works, in source code and object code form.

2. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer to sell, import
and otherwise transfer the Contribution of such Contributor, if any, in source code and object code
form. This patent license shall apply to the combination of the Contribution and the Program if, at
the time the Contribution is added by the Contributor, such addition of the Contribution causes such

165

Appendix E. Common Public License Version 1.0

combination to be covered by the Licensed Patents. The patent license shall not apply to any other
combinations which include the Contribution. No hardware per se is licensed hereunder.

3. Recipient understands that although each Contributor grants the licenses to its Contributions set
forth herein, no assurances are provided by any Contributor that the Program does not infringe the
patent or other intellectual property rights of any other entity. Each Contributor disclaims any
liability to Recipient for claims brought by any other entity based on infringement of intellectual
property rights or otherwise. As a condition to exercising the rights and licenses granted hereunder,
each Recipient hereby assumes sole responsibility to secure any other intellectual property rights
needed, if any. For example, if a third party patent license is required to allow Recipient to distribute
the Program, it is Recipient’s responsibility to acquire that license before distributing the Program.

4. Each Contributor represents that to its knowledge it has sufficient copyright rights in its
Contribution, if any, to grant the copyright license set forth in this Agreement.

E.3. Requirements
A Contributor may choose to distribute the Program in object code form under its own license
agreement, provided that:

1. it complies with the terms and conditions of this Agreement; and

2. its license agreement:

a.effectively disclaims on behalf of all Contributors all warranties and conditions, express and
implied, including warranties or conditions of title and non-infringement, and implied
warranties or conditions of merchantability and fitness for a particular purpose;

b. effectively excludes on behalf of all Contributors all liability for damages, including direct,
indirect, special, incidental and consequential damages, such as lost profits;

c. states that any provisions which differ from this Agreement are offered by that Contributor
alone and not by any other party; and

d. states that source code for the Program is available from such Contributor, and informs
licensees how to obtain it in a reasonable manner on or through a medium customarily used for
software exchange.

When the Program is made available in source code form:

1. it must be made available under this Agreement; and

2. a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that
reasonably allows subsequent Recipients to identify the originator of the Contribution.

166

Appendix E. Common Public License Version 1.0

E.4. Commercial Distribution
Commercial distributors of software may accept certain responsibilities with respect to end users,
business partners and the like. While this license is intended to facilitate the commercial use of the
Program, the Contributor who includes the Program in a commercial product offering should do so in a
manner which does not create potential liability for other Contributors. Therefore, if a Contributor
includes the Program in a commercial product offering, such Contributor ("Commercial Contributor")
hereby agrees to defend and indemnify every other Contributor ("Indemnified Contributor") against any
losses, damages and costs (collectively "Losses") arising from claims, lawsuits and other legal actions
brought by a third party against the Indemnified Contributor to the extent caused by the acts or omissions
of such Commercial Contributor in connection with its distribution of the Program in a commercial
product offering. The obligations in this section do not apply to any claims or Losses relating to any
actual or alleged intellectual property infringement. In order to qualify, an Indemnified Contributor must:
a) promptly notify the Commercial Contributor in writing of such claim, and b) allow the Commercial
Contributor to control, and cooperate with the Commercial Contributor in, the defense and any related
settlement negotiations. The Indemnified Contributor may participate in any such claim at its own
expense.

For example, a Contributor might include the Program in a commercial product offering, Product X. That
Contributor is then a Commercial Contributor. If that Commercial Contributor then makes performance
claims, or offers warranties related to Product X, those performance claims and warranties are such
Commercial Contributor’s responsibility alone. Under this section, the Commercial Contributor would
have to defend claims against the other Contributors related to those performance claims and warranties,
and if a court requires any other Contributor to pay any damages as a result, the Commercial Contributor
must pay those damages.

E.5. No Warranty
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED
ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER
EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR
CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Each Recipient is solely responsible for determining the appropriateness of
using and distributing the Program and assumes all risks associated with its exercise of rights under this
Agreement, including but not limited to the risks and costs of program errors, compliance with applicable
laws, damage to or loss of data, programs or equipment, and unavailability or interruption of operations.

E.6. Disclaimer of Liability
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY
CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT
LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE

167

Appendix E. Common Public License Version 1.0

PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

E.7. General
If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect the
validity or enforceability of the remainder of the terms of this Agreement, and without further action by
the parties hereto, such provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent applicable to
software (including a cross-claim or counterclaim in a lawsuit), then any patent licenses granted by that
Contributor to such Recipient under this Agreement shall terminate as of the date such litigation is filed.
In addition, if Recipient institutes patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the Program with
other software or hardware) infringes such Recipient’s patent(s), then such Recipient’s rights granted
under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient’s rights under this Agreement shall terminate if it fails to comply with any of the material
terms or conditions of this Agreement and does not cure such failure in a reasonable period of time after
becoming aware of such noncompliance. If all Recipient’s rights under this Agreement terminate,
Recipient agrees to cease use and distribution of the Program as soon as reasonably practicable.
However, Recipient’s obligations under this Agreement and any licenses granted by Recipient relating to
the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid inconsistency
the Agreement is copyrighted and may only be modified in the following manner. The Agreement
Steward reserves the right to publish new versions (including revisions) of this Agreement from time to
time. No one other than the Agreement Steward has the right to modify this Agreement. IBM is the
initial Agreement Steward. IBM may assign the responsibility to serve as the Agreement Steward to a
suitable separate entity. Each new version of the Agreement will be given a distinguishing version
number. The Program (including Contributions) may always be distributed subject to the version of the
Agreement under which it was received. In addition, after a new version of the Agreement is published,
Contributor may elect to distribute the Program (including its Contributions) under the new version.
Except as expressly stated in Sections 2(a) and 2(b) above, Recipient receives no rights or licenses to the
intellectual property of any Contributor under this Agreement, whether expressly, by implication,
estoppel or otherwise. All rights in the Program not expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of
the United States of America. No party to this Agreement will bring a legal action under this Agreement
more than one year after the cause of action arose. Each party waives its rights to a jury trial in any
resulting litigation.

168

Index

Symbols
" (double quotation mark),12

’ (single quotation mark),12

, (comma),11

. (period),12

.NIL object,55

\ (backslash),15

~ (tilde, or twiddle),6, 24

A
abstract classes, definition,43

access to variables, prioritizing,64

acquisition,26

activities,63

ADDRESS instruction,67, 73

addressing environments by name,73

apartment-threading and Windows Scripting

Host,152

application environments,74

application programming interfaces

exit handler,115

exit interface,115

RexxDeregisterExit,131

RexxQueryExit,132

RexxRegisterExitDll,128

RexxRegisterExitExe,130

external function interface,110

RexxDeregisterFunction,114

RexxQueryFunction,115

RexxRegisterFunctionDll,112

RexxRegisterFunctionExe,114

halt and trace interface,144

RexxResetTrace,146

RexxSetHalt,144

RexxSetTrace,145

handler definitions,102

handler interface

subcommand handler,102

invoking the Rexx interpreter,95

RexxDidRexxTerminate,101

RexxStart,95

RexxWaitForTermination,101

macrospace interface,146

RexxAddMacro,147

RexxClearMacroSpace,149

RexxDropMacro,148

RexxLoadMacroSpace,150

RexxQueryMacro,151

RexxReorderMacro,152

RexxSaveMacroSpace,149

queue interface,140

RexxAddQueue,142

RexxCreateQueue,140

RexxDeleteQueue,141

RexxPullQueue,143

RexxQueryQueue,142

RXSTRING data structure,94

RXSTRING,94

RXSYSEXIT,97, 117

SHVBLOCK, 134

RXSYSEXIT data structure,97

SHVBLOCK, 134

subcommand interface,102

RexxDeregisterSubcom,107

RexxQuerySubcom,108

RexxRegisterSubcomDll,104

RexxRegisterSubcomExe,106

system memory interface,139

RexxAllocateMemory,139

RexxFreeMemory,139

variable pool interface,133

RexxVariablePool,134

ARG instruction,14

arrays, reading streams into,81

assignments,13

B
backslash (\),15

binary files

closing,85

direct acess,85

querying existence,88

querying other information,89

reading,84

writing, 85

built-in objects,55, 56

169

C
CALL command, Windows,71

CALL instruction,19, 70, 74

calling .CMD files,70

calling the Rexx interpreter,95

changing the search order for methods,61

checking for the existence of a file,88

class methods,47

class scope,58

classes,5

abstract,43

Alarm class,29

Class class,29

collection classes,29

creating with directives,37

creating with messages,41

definition,25

Message class,29, 30

metaclass,44

mixin, 43

Monitor class,29, 31

object,43

provided by Rexx,29, 33

Stem class,29, 31

Stream class,29, 31

String class,29, 31

subclasses,27

superclasses,27

Supplier class,29, 31

clauses

and instructions,10

definition,10

separating,11

spanning nore than one line,11

using object in,48

closing files,85

CMD files, calling,70

colection lasses,29

COM interfaces for Windows Scripting Host,

153

comma (,),11

commands,67

Common Public License,165

concurrency,62

concurrency and Windows Scripting Host,152

CONDITION built-in function,74

condition traps,74

continuing a clause,11

counting words in a file,80

CPL,165

creating classes,37, 41

D
data

abstraction,27

encapsulation,23

modularizing,21

default search order for methods,59

devices, sending information to,91

direct file access,85

directives,37

::CLASS,37

::METHOD, 38

::REQUIRES,39, 51

::REQUIRES example,39

::ROUTINE,38

creating classes with,37

definition,37

order of processing,39

sample program,39, 40, 50

DO instruction,14

double quotation mark ("),12

E
echoing commands,69

encapsulation of data,23

environment for scriptable applications,67

Environment objects,55

ERROR condition,75

example Rexx programs, included,157

EXIT instruction,10

exits,115

EXPOSE instruction,40, 51, 58

EXPOSE keyword,20

external command exit,122

external function exit,120

external function interface

description,110

interface functions,112

returned results,111

170

RexxDeregisterFunction,114

RexxQueryFunction,115

RexxRegisterFunctionDll,112

RexxRegisterFunctionExe,114

simple function,111

simple registration,114

writing, 110

external HALT exit,126

external I/O exit,124

external queue exit,122

external trace exit,127

F
FAILURE condition,75

functions

in expressions,14

nesting,14

Rexx built-in,10

G
GUARD instruction,64

H
host command exit,122

I
I/O model,79

I/O, standard (keyboard, displays, and error

streams),89

IF instruction,14

information hiding,23

inheritance,27, 33

INIT instruction,49, 50

INIT method,40

initialization exit,127

instance methods,47

instances,5, 5

definition,27

uninitializing and deleting,52

instances methods,26

instructions

ADDRESS,67, 73

ARG, 14

CALL, 19, 70, 74

DO, 14

EXIT, 10

for program control (DO, IF, SELECT ...),

14

IF, 14

ITERATE, 18

PARSE,14

PARSE ARG,20

PROCEDURE,19

PULL, 10, 13

RETURN,19

SAY, 10

SELECT,14

SIGNAL ON, 74

inter-object concurrency,62

intra-object concurrency,64

invoking the Rexx interpreter,95

issuing Linux/Unix commands,9

issuing Windows commands,9

ITERATE instructions,18

L
License, Common Public,165

License, Open Object Rexx,165

line-end characters,84

Linix commands, issuing,9

Local environment object,56

local objects,55

locking a scope,64

M
macros

definition,67

environments for,74

macrospace interface

description,146

RexxAddMacro,147

RexxClearMacroSpace,149

171

RexxDropMacro,148

RexxLoadMacroSpace,150

RexxQueryMacro,151

RexxReorderMacro,152

RexxSaveMacroSpace,149

MAKEARRAY method, using,81

message-send operator (~),6, 24

messages,5, 5, 24

creating classes with,41

metaclasses,32, 44

method names, specifying,59

methods,5

definition,25

instance,26

private,62

public,62

scope,59

search order for,59

selecting,59

mixin classes,43

model, stream I/O,79

modularizing data,21

multiple clauses on a line,11

multiple inheritance,27

multithreading and Windows Scripting Host,

152

N
naming variables,12

Notices,163

O
object classes,27, 43

Object Rexx Runtime,155

object variable pools,63

object-oriented programming,21

objects,5, 5

definition,22

kinds of,22

ooRexx License,165

Open Object Rexx License,165

operators and operations, partial list of,15

P
PARSE ARG instructions,20

PARSE instruction,14

period (.),12

polymorphism,25

prioritizing access to variables,64

private methods,62

PROCEDURE instruction,19

procedures,18

programs

definition,9

running,9

writing, 11

programs without source,155

public methods,62

public objects,55

PULL instruction,10, 14

Q
querying a file,89

queue exit,122

queue interface

description,140, 144

RexxAddQueue,142

RexxCreateQueue,140

RexxDeleteQueue,141

RexxPullQueue,143

RexxQueryQueue,142

RexxResetTrace,146

RexxSetHalt,144

RexxSetTrace,145

R
RC special variable,53, 73

reading

a text file, one character at a time,84

binary files,83

specific lines of text files,82

streams into arrays,81

text files,80

REPLY instruction,63

RESULT special variable,53

172

return code from Windows and Linux,73

RETURN instruction,19

Rexx

ADDRESS instruction,67, 73

and object-oriented extensions,5

and Unix,4

and Windows,4

ARG instruction,14

as a macro language,9

assignments,13

built-in functions,10

built-in objects,55

CALL instruction,19, 70, 74

default environment,67

directives,37

DO instruction,14

EXIT instruction,10

EXPOSE instruction,51, 58

features,3

GUARD instruction,64

IF instruction,14

ITERATE instruction,18

local objects,55

PARSE ARG instruction,20

PARSE instruction,14

PROCEDURE instruction,19

procedures,18

program samples, included,157

program, definition,9

program, running a,9

program, writing a,11

public objects,55

PULL instruction,10, 14

REPLY instruction,63

RETURN instruction,19

SAY instruction,10, 48, 49, 52

SELECT instruction,14

SIGNAL instruction,74

subroutines,18

traditional,5, 9

USE ARG instruction,??

Rexx interpreter, invoking,95

Rexx program, definition,9

RexxAddMacro,147

RexxAddQueue,142

RexxAllocateMemory,139

REXXC utility, 155

RexxClearMacroSpace,149

RexxCreateQueue,140

RexxDeleteQueue,141

RexxDeregisterExit,131

RexxDeregisterFunction,114

RexxDeregisterSubcom,107

RexxDidRexxTerminate,101

RexxDropMacro,148

RexxFreeMemory,139

RexxLoadMacroSpace,150

RexxPullQueue,143

RexxQueryExit,132

RexxQueryFunction,115

RexxQueryMacro,151

RexxQueryQueue,142

RexxQuerySubcom,108

RexxRegisterExitDll,128

RexxRegisterExitExe,130

RexxRegisterFunctionDll,112

RexxRegisterFunctionExe,114

RexxRegisterSubcomDll,104

RexxRegisterSubcomExe,106

RexxReorderMacro,152

RexxResetTrace,146

RexxSaveMacroSpace,149

RexxSetHalt,144

RexxSetTrace,145

RexxStart,95

example using,98

exit example,107

using exits,97

using in-storage programs,96

using macrospace programs,96

REXXTRY procedures

developing with REXXTRY,11

REXXTRY program,11

RexxVariablePool,134

RexxWaitForTermination,101

RXCMD exit, 122

RXFNC exit,120

RXHLT exit, 126

RXINI exit, 127

RXMSQ exit,122

RXSIO exit,124

RXSTRING,94

definition,94

null terminated,94

returning,95

RXSYSEXIT data structure,97

173

RXTER exit,128

RXTRC exit,127

S
sample Rexx programs, included,157

SAY instruction,10, 48, 49, 52

scope,58, 59

scriptable applications,67

search order

for environment symbols,57

for methods, changing,61, 62

for methods, default,59

SELECT instruction,14

SELF special variable,53

sending messages within an activity,64

session I/O exit,124

SHVBLOCK, 134

SIGL special variable,54, 74

SIGNAL ON instruction,74

single quotation mark (’),12

special variable,53

splitting clauses,11

standard I/O (keyboard, displays, and error

streams),89

starting REXXTRY,11

stem,6

stream I/O model,79

stream object,79

string,6

STRING method,48, 49, 52

strings,4, 5, 10, 11, 12, 31

SUBCLASS method,52

SUBCLASS option,40, 43, 61

subclasses,27

subcommand interface

definition,102

description,102

registering,102

RexxDeregisterSubcom,107

RexxQuerySubcom,108

RexxRegisterSubcomDll,104

RexxRegisterSubcomExe,106

subcommand errors,103

subcommand failures,103

subcommand handler example,103

subcommand return code,103

subcommand processing,74

subroutines,18

SUPER special variable,54

superclasses,27

symbols

.environment symbol,55

.error symbol,56

.input symbol,56

.local symbol,56

.methods symbol,56

.nil symbol,55

.output symbol,56

.rs symbol,57

SYSEXIT interface

definition,115

description,115

exit functions,128

external function exit,120

external HALT exit,126

host command exit,122

initialization exit,127

queue exit,122

registration example,130

RexxDeregisterExit,131

RexxQueryExit,132

RexxRegisterExitDll,128

RexxRegisterExitExe,130

RXCMD exit, 119, 122

RXFNC exit,118, 120

RXHLT exit, 119, 126

RXINI exit, 120, 127

RXMSQ exit,119, 122

RXSIO exit,119, 124

RXSYSEXIT data structure,117

RXTER exit,120, 128

RXTRC exit,120, 127

sample exit,117

termination exit,128

tracing exit,127

174

T
termination exit,128

text files

closing,85

direct acess,85

querying existence,88

querying other information,89

reading,80

reading a character at a time,84

reading into an array,81

reading specific lines,82

writing, 82

thread,63, 105, 129, 134, 145, 145

tilde (~),6, 24

trapping command errors,74

traps,74

twiddle (~),6, 24

typeless,4

U
UNINIT method,52

Unix commands, issuing,9

UNKNOWN method,60, 62

USE ARG instruction,40, 51

V
variable pool interface

description,133

direct interface,133

dropping a variable,136

fetching next variable,135

fetching private information,135

fetching variables,135

restrictions,134

return codes,136, 137

returning variable names,134

returning variable value,135

RexxVariablePool,134

RexxVariablePool example,138

setting variables,135

shared variable pool request block,134

SHVBLOCK data structure,134

symbolic interface,133

variables

acquiring,26, 28

exposing,20, 40, 51, 63

hiding,18

in objects,26, 28, 47

in variable pools,63

making accessible,20

naming,12

special,19, 53, 61, 61

W
Windows batch (CMD) files,69

Windows CALL command,70

Windows commands, issuing,9

Windows Scripting Host interface,152

writing

binary files,85

text files,82

175

	Open Object Rexx
	Table of Contents
	List of Figures
	Chapter 1. About This Book
	1.1. Who Should Read This Book
	1.2. What You Should Know before Reading This Book
	1.3. Related Information
	1.4. A Note About Program Examples in this Document

	Chapter 2. Meet Object Rexx
	2.1. The Main Attractions
	2.1.1. ObjectOriented Programming
	2.1.2. An EnglishLike Language
	2.1.3. CrossPlatform Versatility
	2.1.4. Fewer Rules
	2.1.5. Interpreted, Not Compiled
	2.1.6. BuiltIn Functions and Methods
	2.1.7. Typeless Variables
	2.1.8. String Handling
	2.1.9. Clear Error Messages and Powerful Debugging
	2.1.10. Impressive Development Tools

	2.2. Rexx and the Operating System
	2.3. A Classic Language Gets Classier
	2.3.1. From Traditional Rexx to Object Rexx

	2.4. The Object Advantage
	2.5. The Next Step

	Chapter 3. A Quick Tour of Traditional Rexx
	3.1. What Is a Rexx Program?
	3.2. Running a Rexx Program
	3.3. Elements of Rexx
	3.4. Writing Your Program
	3.5. Testing Your Program
	3.6. Improving Startup Time
	3.7. Variables, Constants, and Literal Strings
	3.8. Assignments
	3.9. Using Functions
	3.10. Program Control
	3.11. Subroutines and Procedures

	Chapter 4. Into the Object World
	4.1. What Is ObjectOriented Programming?
	4.2. Modularizing Data
	4.3. Modeling Objects
	4.4. How Objects Interact
	4.5. Methods
	4.6. Polymorphism
	4.7. Classes and Instances
	4.8. Data Abstraction
	4.9. Subclasses, Superclasses, and Inheritance

	Chapter 5. The Basics of Classes
	5.1. Rexx Classes for Programming
	5.1.1. The Alarm Class
	5.1.2. The Collection Classes
	5.1.3. The Message Class
	5.1.4. The Monitor Class
	5.1.5. The Stem Class
	5.1.6. The Stream Class
	5.1.7. The String Class
	5.1.8. The Supplier Class

	5.2. Rexx Classes for Organizing Objects
	5.2.1. The Object Class
	5.2.2. The Class Class

	5.3. Rexx Classes: The Big Picture
	5.4. Creating Your Own Classes Using Directives
	5.4.1. What Are Directives?
	5.4.2. The Directives Rexx Provides
	5.4.2.1. The ::CLASS Directive
	5.4.2.2. The ::METHOD Directive
	5.4.2.3. The ::ROUTINE Directive
	5.4.2.4. The ::REQUIRES Directive

	5.4.3. How Directives Are Processed
	5.4.4. A Sample Program Using Directives
	5.4.5. Another Sample Program

	5.5. Creating Classes Using Messages
	5.5.1. Defining a New Class
	5.5.2. Adding a Method to a Class
	5.5.3. Defining a Subclass of the New Class
	5.5.4. Defining an Instance

	5.6. Types of Classes
	5.6.1. Object Classes
	5.6.2. Abstract Classes
	5.6.3. Mixin Classes

	5.7. Metaclasses

	Chapter 6. A Closer Look at Objects
	6.1. Using Objects in Rexx Clauses
	6.2. Common Methods
	6.2.1. Initializing Instances Using INIT
	6.2.2. Returning String Data Using STRING
	6.2.3. Uninitializing and Deleting Instances Using UNINIT

	6.3. Special Variables
	6.4. Public, Local, and BuiltIn Environment Objects
	6.4.1. The Public Environment Object (.environment)
	6.4.1.1. The NIL Object (.nil)

	6.4.2. The Local Environment Object (.local)
	6.4.3. BuiltIn Environment Objects
	6.4.4. The Default Search Order for Environment Objects

	6.5. Determining the Scope of Methods and Variables
	6.5.1. Objects with a Class Scope
	6.5.2. Objects with Their Own Unique Scope

	6.6. More about Methods
	6.6.1. The Default Search Order for Selecting a Method
	6.6.2. Changing the Search Order for Methods
	6.6.3. Public versus Private Methods
	6.6.4. Defining an UNKNOWN Method

	6.7. Concurrency
	6.7.1. InterObject Concurrency
	6.7.1.1. Object Variable Pools
	6.7.1.2. Prioritizing Access to Variables
	6.7.1.3. Sending Messages within an Activity

	6.7.2. IntraObject Concurrency
	6.7.2.1. Activating Methods

	Chapter 7. Commands
	7.1. How to Issue Commands
	7.2. Command Echo
	7.3. Rexx and Batch Files
	7.4. Issuing a Command to Call a .CMD File
	7.5. Using Variables to Build Commands
	7.6. Using Quotation Marks
	7.7. ADDRESS Instruction
	7.8. Using Return Codes from Commands
	7.9. Subcommand Processing
	7.10. Trapping Command Errors
	7.10.1. Instructions and Conditions
	7.10.2. Disabling Traps
	7.10.3. Using SIGNAL ON ERROR
	7.10.4. Using CALL ON ERROR
	7.10.5. A Common ErrorHandling Routine

	Chapter 8. Input and Output
	8.1. More about Stream Objects
	8.2. Reading a Text File
	8.3. Reading a Text File into an Array
	8.4. Reading Specific Lines of a Text File
	8.5. Writing a Text File
	8.6. Reading Binary Files
	8.7. Reading Text Files a Character at a Time
	8.8. Writing Binary Files
	8.9. Closing Files
	8.10. Direct File Access
	8.11. Checking for the Existence of a File
	8.12. Getting Other Information about a File
	8.13. Using Standard I/O
	8.14. Using Windows Devices

	Appendix A. Rexx Application Programming Interfaces
	A.1. Handler Characteristics
	A.2. RXSTRINGs
	A.3. Calling the Rexx Interpreter
	A.3.1. From the Operating System
	A.3.2. From within an Application
	A.3.3. The RexxStart Function
	A.3.3.1. Parameters
	A.3.3.2. Return Codes
	A.3.3.3. Example

	A.3.4. The RexxWaitForTermination Function
	A.3.5. The RexxDidRexxTerminate Function
	A.3.5.1. Return Codes
	A.3.5.2. Example

	A.4. Subcommand Interface
	A.4.1. Registering Subcommand Handlers
	A.4.1.1. Creating Subcommand Handlers
	A.4.1.1.1. Example

	A.4.2. Subcommand Interface Functions
	A.4.2.1. RexxRegisterSubcomDll
	A.4.2.1.1. Parameters
	A.4.2.1.2. Return Codes
	A.4.2.1.3. Remarks

	A.4.2.2. RexxRegisterSubcomExe
	A.4.2.2.1. Parameters
	A.4.2.2.2. Return Codes
	A.4.2.2.3. Remarks
	A.4.2.2.4. Example

	A.4.2.3. RexxDeregisterSubcom
	A.4.2.3.1. Parameters
	A.4.2.3.2. Return Codes
	A.4.2.3.3. Remarks

	A.4.2.4. RexxQuerySubcom
	A.4.2.4.1. Parameters
	A.4.2.4.2. Return Codes
	A.4.2.4.3. Example

	A.5. External Function Interface
	A.5.1. Registering External Functions
	A.5.1.1. Creating External Functions

	A.5.2. Calling External Functions
	A.5.2.1. Example

	A.5.3. External Function Interface Functions
	A.5.3.1. RexxRegisterFunctionDll
	A.5.3.1.1. Parameters
	A.5.3.1.2. Return Codes
	A.5.3.1.3. Remarks
	A.5.3.1.4. Example

	A.5.3.2. RexxRegisterFunctionExe
	A.5.3.2.1. Parameters
	A.5.3.2.2. Return Codes

	A.5.3.3. RexxDeregisterFunction
	A.5.3.3.1. Parameters
	A.5.3.3.2. Return Codes

	A.5.3.4. RexxQueryFunction
	A.5.3.4.1. Parameters
	A.5.3.4.2. Return Codes
	A.5.3.4.3. Remarks

	A.6. System Exit Interface
	A.6.1. Writing System Exit Handlers
	A.6.1.1. Exit Return Codes
	A.6.1.2. Exit Parameters
	A.6.1.3. Identifying Exit Handlers to Rexx
	A.6.1.3.1. Example

	A.6.2. System Exit Definitions
	A.6.2.1. RXFNC
	A.6.2.2. RXCMD
	A.6.2.3. RXMSQ
	A.6.2.4. RXSIO
	A.6.2.5. RXHLT
	A.6.2.6. RXTRC
	A.6.2.7. RXINI
	A.6.2.8. RXTER

	A.6.3. System Exit Interface Functions
	A.6.3.1. RexxRegisterExitDll
	A.6.3.1.1. Parameters
	A.6.3.1.2. Return Codes
	A.6.3.1.3. Remarks

	A.6.3.2. RexxRegisterExitExe
	A.6.3.2.1. Parameters
	A.6.3.2.2. Return Codes
	A.6.3.2.3. Remarks
	A.6.3.2.4. Example

	A.6.3.3. RexxDeregisterExit
	A.6.3.3.1. Parameters
	A.6.3.3.2. Return Codes
	A.6.3.3.3. Remarks

	A.6.3.4. RexxQueryExit
	A.6.3.4.1. Parameters
	A.6.3.4.2. Return Codes
	A.6.3.4.3. Example

	A.7. Variable Pool Interface
	A.7.1. Interface Types
	A.7.1.1. Symbolic Interface
	A.7.1.2. Direct Interface

	A.7.2. RexxVariablePool Restrictions
	A.7.3. RexxVariablePool Interface Function
	A.7.3.1. RexxVariablePool
	A.7.3.1.1. Parameters
	A.7.3.1.2. RexxVariablePool Return Codes
	A.7.3.1.3. Example

	A.8. Dynamically Allocating and Deallocating Memory
	A.8.1. The RexxAllocateMemory() Function
	A.8.2. The RexxFreeMemory() Function

	A.9. Queue Interface
	A.9.1. Queue Interface Functions
	A.9.1.1. RexxCreateQueue
	A.9.1.1.1. Parameters
	A.9.1.1.2. Return Codes
	A.9.1.1.3. Remarks

	A.9.1.2. RexxDeleteQueue
	A.9.1.2.1. Parameters
	A.9.1.2.2. Return Codes
	A.9.1.2.3. Remarks

	A.9.1.3. RexxQueryQueue
	A.9.1.3.1. Parameters
	A.9.1.3.2. Return Codes

	A.9.1.4. RexxAddQueue
	A.9.1.4.1. Parameters
	A.9.1.4.2. Return Codes

	A.9.1.5. RexxPullQueue
	A.9.1.5.1. Parameters
	A.9.1.5.2. Return Codes
	A.9.1.5.3. Remarks

	A.10. Halt and Trace Interface
	A.10.1. Halt and Trace Interface Functions
	A.10.1.1. RexxSetHalt
	A.10.1.1.1. Parameters
	A.10.1.1.2. Return Codes
	A.10.1.1.3. Remarks

	A.10.1.2. RexxSetTrace
	A.10.1.2.1. Parameters
	A.10.1.2.2. Return Codes
	A.10.1.2.3. Remarks

	A.10.1.3. RexxResetTrace
	A.10.1.3.1. Parameters
	A.10.1.3.2. Return Codes
	A.10.1.3.3. Remarks

	A.11. Macrospace Interface
	A.11.1. Search Order
	A.11.2. Storage of Macrospace Libraries
	A.11.3. Macrospace Interface Functions
	A.11.3.1. RexxAddMacro
	A.11.3.1.1. Parameters
	A.11.3.1.2. Return Codes

	A.11.3.2. RexxDropMacro
	A.11.3.2.1. Parameter
	A.11.3.2.2. Return Codes

	A.11.3.3. RexxClearMacroSpace
	A.11.3.3.1. Return Codes
	A.11.3.3.2. Remarks

	A.11.3.4. RexxSaveMacroSpace
	A.11.3.4.1. Parameters
	A.11.3.4.2. Return Codes
	A.11.3.4.3. Remarks

	A.11.3.5. RexxLoadMacroSpace
	A.11.3.5.1. Parameters
	A.11.3.5.2. Return Codes
	A.11.3.5.3. Remarks

	A.11.3.6. RexxQueryMacro
	A.11.3.6.1. Parameters
	A.11.3.6.2. Return Codes

	A.11.3.7. RexxReorderMacro
	A.11.3.7.1. Parameters
	A.11.3.7.2. Return Codes

	A.12. Windows Scripting Host Interface
	A.12.1. Concurrency
	A.12.2. WSH Features
	A.12.2.1. COM Interfaces
	A.12.2.2. Script Debugging
	A.12.2.3. DCOM

	Appendix B. Object Rexx Runtime
	B.1. Distributing Programs without Source

	Appendix C. Sample Rexx Programs
	Appendix D. Notices
	D.1. Trademarks
	D.2. Source Code For This Document

	Appendix E. Common Public License Version 1.0
	E.1. Definitions
	E.2. Grant of Rights
	E.3. Requirements
	E.4. Commercial Distribution
	E.5. No Warranty
	E.6. Disclaimer of Liability
	E.7. General

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

